|
import cv2 |
|
from fastai.vision.all import * |
|
import numpy as np |
|
import gradio as gr |
|
from scipy import ndimage |
|
|
|
fnames = get_image_files("./albumentations/original") |
|
def label_func(fn): return "./albumentations/labelled/"f"{fn.stem}.png" |
|
codes = np.loadtxt('labels.txt', dtype=str) |
|
w, h = 768, 1152 |
|
img_size = (w,h) |
|
im_size = (h,w) |
|
|
|
dls = SegmentationDataLoaders.from_label_func( |
|
".", bs=3, fnames = fnames, label_func = label_func, codes = codes, |
|
item_tfms=Resize(img_size) |
|
) |
|
|
|
learn = unet_learner(dls, resnet34) |
|
learn.load('learn') |
|
|
|
def segmentImage(img_path): |
|
img = cv2.imread(img_path, 0) |
|
for i in range(img.shape[0]): |
|
for j in range(img.shape[1]): |
|
if img[i][j] > 0: |
|
img[i][j] = 1 |
|
kernel = np.ones((3,3), np.uint8) |
|
img = cv2.erode(img, kernel, iterations=1) |
|
img = cv2.dilate(img, kernel, iterations=1) |
|
img = ndimage.binary_fill_holes(img).astype(int) |
|
labels, nlabels = ndimage.label(img) |
|
colors = np.random.randint(0, 255, (nlabels + 1, 3)) |
|
colors[0] = 0 |
|
img_color = colors[labels] |
|
return img_color |
|
|
|
def predict_segmentation(img): |
|
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) |
|
resized_img = cv2.resize(gray_img, im_size) |
|
pred = learn.predict(resized_img) |
|
color_pred = pred[0].show(ctx=None, cmap='gray', alpha=None) |
|
color_pred_array = color_pred_array.astype(np.uint8) |
|
output_image = Image.fromarray(color_pred_array) |
|
|
|
temp_file = 'temp.png' |
|
output_image.save(temp_file) |
|
|
|
segmented_image = segmentImage(temp_file) |
|
return output_image, segmented_image |
|
|
|
input_image = gr.inputs.Image() |
|
output_image1 = gr.outputs.Image(type='pil') |
|
output_image2 = gr.outputs.Image(type='pil') |
|
app = gr.Interface(fn=predict_segmentation, inputs=input_image, outputs=[output_image1, output_image2], title='Microstructure Segmentation', description='Segment the input image into grain and background.') |
|
app.launch() |
|
|