import cv2 from fastai.vision.all import * import gradio as gr fnames = get_image_files("./albumentations/original") def label_func(fn): return "./albumentations/labelled/"f"{fn.stem}.png" codes = np.loadtxt('labels.txt', dtype=str) w, h = 768, 1152 img_size = (w,h) im_size = (h,w) dls = SegmentationDataLoaders.from_label_func( ".", bs=3, fnames = fnames, label_func = label_func, codes = codes, item_tfms=Resize(img_size) ) learn = unet_learner(dls, resnet34) learn.load('learn') def predict_segmentation(img): # Convert the input image to grayscale gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Resize the image to the size of the training images resized_img = cv2.resize(gray_img, im_size) # Predict the segmentation mask pred = learn.predict(resized_img) # Convert the predicted mask to a color image color_pred = pred[0].show(ctx=None, cmap='gray', alpha=None) # Convert the color image to a numpy array color_pred_array = np.array(color_pred) # Convert the numpy array back to a PIL image output_image = Image.fromarray(color_pred_array) return output_image input_image = gr.inputs.Image() output_image = gr.outputs.Image(type='pil') app = gr.Interface(fn=predict_segmentation, inputs=input_image, outputs=output_image, title='Microstructure Segmentation', description='Segment the input image into grain and background.') app.launch()