import cv2 from fastai.vision.all import * import numpy as np import gradio as gr from scipy import ndimage fnames = get_image_files("./albumentations/original") def label_func(fn): return "./albumentations/labelled/"f"{fn.stem}.png" codes = np.loadtxt('labels.txt', dtype=str) w, h = 768, 1152 img_size = (w,h) im_size = (h,w) dls = SegmentationDataLoaders.from_label_func( ".", bs=3, fnames = fnames, label_func = label_func, codes = codes, item_tfms=Resize(img_size) ) learn = unet_learner(dls, resnet34) learn.load('learn') def segmentImage(img_path): img = cv2.imread(img_path, 0) for i in range(img.shape[0]): for j in range(img.shape[1]): if img[i][j] > 0: img[i][j] = 1 kernel = np.ones((3,3), np.uint8) img = cv2.erode(img, kernel, iterations=1) img = cv2.dilate(img, kernel, iterations=1) img = ndimage.binary_fill_holes(img).astype(int) labels, nlabels = ndimage.label(img) # Get grain sizes sizes = ndimage.sum(img, labels, range(nlabels + 1)) scale_factor = 3072 / 1152 c = 0.4228320313 # Divide sizes by pixel_to_micrometer to get the sizes in micrometers and store them in a list new_sizes new_sizes = [size * scale_factor * scale_factor * c * c for size in sizes] # Round the grain sizes to 2 decimal places new_sizes = [round(size, 2) for size in new_sizes] gradient_img = np.zeros((img.shape[0], img.shape[1], 3), np.uint8) colors = [] for i in range(len(new_sizes)): if new_sizes[i] < 250 * c * c: colors.append((255, 255, 255)) elif new_sizes[i] < 7500 * c * c: colors.append((2, 106, 248)) elif new_sizes[i] < 20000 * c * c: colors.append((0, 255, 107)) elif new_sizes[i] < 45000 * c * c: colors.append((255, 201, 60)) else: colors.append((255, 0, 0)) for i in range(img.shape[0]): for j in range(img.shape[1]): if labels[i][j] != 0: gradient_img[i][j] = colors[labels[i][j]] colors = np.random.randint(0, 255, (nlabels + 1, 3)) colors[0] = 0 img_color = colors[labels] return img_color, gradient_img def predict_segmentation(img): gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) resized_img = cv2.resize(gray_img, im_size) pred = learn.predict(resized_img) scaled_pred = (pred[0].numpy() * 255).astype(np.uint8) output_image = PILImage.create(scaled_pred) # Save the image to a temporary file temp_file = 'temp.png' output_image.save(temp_file) # Call the segmentImage function segmented_image, gradient_image = segmentImage(temp_file) return output_image, segmented_image, gradient_image input_image = gr.inputs.Image() output_image1 = gr.outputs.Image(type='pil') output_image2 = gr.outputs.Image(type='pil') app = gr.Interface(fn=predict_segmentation, inputs=input_image, outputs=[output_image1, output_image2, output_image3], title='Microstructure Segmentation', description='Segment the input image into grain and background.') app.launch()