|
import io |
|
import torch |
|
from torchvision import transforms |
|
from huggingface_hub import HfFileSystem |
|
from PIL import Image |
|
|
|
|
|
fs = HfFileSystem() |
|
efficientnet_model_path = 'dhhd255/efficientnet_b3/efficientnet_b3.pt' |
|
with fs.open(efficientnet_model_path, 'rb') as f: |
|
efficientnet_model_content = f.read() |
|
|
|
|
|
efficientnet_model_file = io.BytesIO(efficientnet_model_content) |
|
efficientnet_model = torch.load(efficientnet_model_file, map_location=torch.device('cpu')) |
|
|
|
|
|
custom_model_path = 'dhhd255/efficient_net_parkinsons/best_model.pth' |
|
with fs.open(custom_model_path, 'rb') as f: |
|
custom_model_content = f.read() |
|
|
|
|
|
custom_model_file = io.BytesIO(custom_model_content) |
|
custom_model_state_dict = torch.load(custom_model_file, map_location=torch.device('cpu')) |
|
|
|
|
|
model = MyModel() |
|
|
|
|
|
model.load_state_dict(custom_model_state_dict) |
|
model.eval() |
|
|
|
|
|
def image_classifier(image): |
|
|
|
data_transform = transforms.Compose([ |
|
transforms.Lambda(lambda x: x.convert('RGB')), |
|
transforms.Resize((224, 224)), |
|
transforms.ToTensor() |
|
]) |
|
image = Image.fromarray(image) |
|
image = data_transform(image) |
|
image = image.unsqueeze(0) |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model(image) |
|
_, predicted = torch.max(outputs.data, 1) |
|
|
|
|
|
labels = ['Healthy', 'Parkinson'] |
|
predicted_label = labels[predicted.item()] |
|
|
|
|
|
return outputs[0].numpy(), predicted_label |
|
|
|
|
|
img_path = '/content/test_image_healthy.png' |
|
img = Image.open(img_path) |
|
img = data_transform(img) |
|
|
|
|
|
img = img.unsqueeze(0) |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model(img) |
|
_, predicted = torch.max(outputs.data, 1) |
|
print(f'Predicted class: {predicted.item()}') |
|
|