Update app.py
Browse files
app.py
CHANGED
@@ -5,23 +5,30 @@ from PIL import Image
|
|
5 |
|
6 |
# Authenticate and download the EfficientNet model from Hugging Face Spaces
|
7 |
fs = HfFileSystem()
|
8 |
-
|
9 |
-
with fs.open(
|
10 |
-
|
11 |
|
12 |
# Save the EfficientNet model file to disk
|
13 |
efficientnet_model_file = 'efficientnet_b3.pt'
|
14 |
with open(efficientnet_model_file, 'wb') as f:
|
15 |
-
f.write(
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
|
|
|
20 |
|
21 |
-
#
|
22 |
custom_model_file = 'best_model.pth'
|
23 |
-
|
|
|
24 |
|
|
|
|
|
|
|
|
|
|
|
25 |
model.eval()
|
26 |
|
27 |
# Define a function that takes an image as input and uses the model for inference
|
@@ -48,16 +55,16 @@ def image_classifier(image):
|
|
48 |
# Return the result
|
49 |
return outputs[0].numpy(), predicted_label
|
50 |
|
51 |
-
#
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
5 |
|
6 |
# Authenticate and download the EfficientNet model from Hugging Face Spaces
|
7 |
fs = HfFileSystem()
|
8 |
+
efficientnet_model_path = 'dhhd255/efficientnet_b3/efficientnet_b3.pt'
|
9 |
+
with fs.open(efficientnet_model_path, 'rb') as f:
|
10 |
+
efficientnet_model_content = f.read()
|
11 |
|
12 |
# Save the EfficientNet model file to disk
|
13 |
efficientnet_model_file = 'efficientnet_b3.pt'
|
14 |
with open(efficientnet_model_file, 'wb') as f:
|
15 |
+
f.write(efficientnet_model_content)
|
16 |
|
17 |
+
# Authenticate and download your custom model from Hugging Face Spaces
|
18 |
+
custom_model_path = 'dhhd255/efficient_net_parkinsons/best_model.pth'
|
19 |
+
with fs.open(custom_model_path, 'rb') as f:
|
20 |
+
custom_model_content = f.read()
|
21 |
|
22 |
+
# Save your custom model file to disk
|
23 |
custom_model_file = 'best_model.pth'
|
24 |
+
with open(custom_model_file, 'wb') as f:
|
25 |
+
f.write(custom_model_content)
|
26 |
|
27 |
+
# Load the EfficientNet model onto the CPU
|
28 |
+
model = torch.load(efficientnet_model_file)
|
29 |
+
|
30 |
+
# Load your custom model onto the CPU
|
31 |
+
model.load_state_dict(torch.load(custom_model_file))
|
32 |
model.eval()
|
33 |
|
34 |
# Define a function that takes an image as input and uses the model for inference
|
|
|
55 |
# Return the result
|
56 |
return outputs[0].numpy(), predicted_label
|
57 |
|
58 |
+
# Load and preprocess the image
|
59 |
+
img_path = '/content/test_image_healthy.png'
|
60 |
+
img = Image.open(img_path)
|
61 |
+
img = data_transform(img)
|
62 |
+
|
63 |
+
# Add a batch dimension and move the image to the device
|
64 |
+
img = img.unsqueeze(0).to(device)
|
65 |
+
|
66 |
+
# Perform inference
|
67 |
+
with torch.no_grad():
|
68 |
+
outputs = model(img)
|
69 |
+
_, predicted = torch.max(outputs.data, 1)
|
70 |
+
print(f'Predicted class: {predicted.item()}')
|