dhhd255 commited on
Commit
76f07f2
·
1 Parent(s): 6592d56

Create main.py

Browse files
Files changed (1) hide show
  1. main.py +35 -0
main.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from tensorflow import keras
3
+ import numpy as np
4
+ from huggingface_hub import HfApi
5
+ import h5py
6
+ from io import BytesIO
7
+
8
+ # Authenticate and read the custom model from Hugging Face Spaces
9
+ hf_api = HfApi()
10
+ model_url = hf_api.presigned_url('dhhd255', 'idk_test', filename='best_model.h5', token='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')
11
+ r = requests.get(model_url)
12
+ model_file = h5py.File(BytesIO(r.content), 'r')
13
+
14
+ # Load your custom model
15
+ model = keras.models.load_model(model_file)
16
+
17
+ def image_classifier(inp):
18
+ # Preprocess the input image
19
+ inp = np.array(inp)
20
+ inp = inp / 255.0
21
+ inp = np.expand_dims(inp, axis=0)
22
+
23
+ # Use your custom model for inference
24
+ predictions = model.predict(inp)
25
+
26
+ # Process the predictions and return the result
27
+ result = {}
28
+ for i, prediction in enumerate(predictions[0]):
29
+ label = f'Label {i+1}'
30
+ result[label] = prediction
31
+
32
+ return result
33
+
34
+ demo = gr.Interface(fn=image_classifier, inputs='image', outputs='label')
35
+ demo.launch()