Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import streamlit as st
|
2 |
import torch
|
3 |
from torchvision import transforms
|
4 |
from efficientnet_pytorch import EfficientNet
|
@@ -7,17 +6,17 @@ from PIL import Image
|
|
7 |
|
8 |
# Authenticate and download the custom model from Hugging Face Spaces
|
9 |
fs = HfFileSystem()
|
10 |
-
model_path = 'dhhd255/
|
11 |
with fs.open(model_path, 'rb') as f:
|
12 |
model_content = f.read()
|
13 |
|
14 |
# Save the model file to disk
|
15 |
-
with open('
|
16 |
f.write(model_content)
|
17 |
|
18 |
# Load your custom model onto the CPU
|
19 |
model = EfficientNet.from_pretrained('efficientnet-b3')
|
20 |
-
model.load_state_dict(torch.load('
|
21 |
model.eval()
|
22 |
|
23 |
# Define a function that takes an image as input and uses the model for inference
|
|
|
|
|
1 |
import torch
|
2 |
from torchvision import transforms
|
3 |
from efficientnet_pytorch import EfficientNet
|
|
|
6 |
|
7 |
# Authenticate and download the custom model from Hugging Face Spaces
|
8 |
fs = HfFileSystem()
|
9 |
+
model_path = 'dhhd255/efficientnet_b3/efficientnet_b3.pt'
|
10 |
with fs.open(model_path, 'rb') as f:
|
11 |
model_content = f.read()
|
12 |
|
13 |
# Save the model file to disk
|
14 |
+
with open('efficientnet_b3.pt', 'wb') as f:
|
15 |
f.write(model_content)
|
16 |
|
17 |
# Load your custom model onto the CPU
|
18 |
model = EfficientNet.from_pretrained('efficientnet-b3')
|
19 |
+
model.load_state_dict(torch.load('efficientnet_b3.pt', map_location=torch.device('cpu')))
|
20 |
model.eval()
|
21 |
|
22 |
# Define a function that takes an image as input and uses the model for inference
|