Update app.py
Browse files
app.py
CHANGED
@@ -23,8 +23,8 @@ with fs.open(custom_model_path, 'rb') as f:
|
|
23 |
custom_model_file = io.BytesIO(custom_model_content)
|
24 |
custom_model_state_dict = torch.load(custom_model_file, map_location=torch.device('cpu'))
|
25 |
|
26 |
-
# Create a new instance of your model
|
27 |
-
model =
|
28 |
|
29 |
# Load your custom model into the new instance
|
30 |
model.load_state_dict(custom_model_state_dict)
|
@@ -41,18 +41,6 @@ def image_classifier(image):
|
|
41 |
image = Image.fromarray(image)
|
42 |
image = data_transform(image)
|
43 |
image = image.unsqueeze(0)
|
44 |
-
|
45 |
-
# Use your custom model for inference
|
46 |
-
with torch.no_grad():
|
47 |
-
outputs = model(image)
|
48 |
-
_, predicted = torch.max(outputs.data, 1)
|
49 |
-
|
50 |
-
# Map the index to a class label
|
51 |
-
labels = ['Healthy', 'Parkinson']
|
52 |
-
predicted_label = labels[predicted.item()]
|
53 |
-
|
54 |
-
# Return the result
|
55 |
-
return outputs[0].numpy(), predicted_label
|
56 |
|
57 |
# Load and preprocess the image
|
58 |
img_path = '/content/test_image_healthy.png'
|
|
|
23 |
custom_model_file = io.BytesIO(custom_model_content)
|
24 |
custom_model_state_dict = torch.load(custom_model_file, map_location=torch.device('cpu'))
|
25 |
|
26 |
+
# Create a new instance of your custom model
|
27 |
+
model = torch.hub.load('ultralytics/yolov5', 'custom', path='/content/efficientnet_b3.pt')
|
28 |
|
29 |
# Load your custom model into the new instance
|
30 |
model.load_state_dict(custom_model_state_dict)
|
|
|
41 |
image = Image.fromarray(image)
|
42 |
image = data_transform(image)
|
43 |
image = image.unsqueeze(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
# Load and preprocess the image
|
46 |
img_path = '/content/test_image_healthy.png'
|