Spaces:
Sleeping
Sleeping
Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModel
|
3 |
+
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
+
import streamlit as st
|
6 |
+
|
7 |
+
# Set the device
|
8 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
9 |
+
|
10 |
+
# Load the trained model from the Hugging Face Hub
|
11 |
+
model = AutoModel.from_pretrained('dhhd255/parkinsons_pred12')
|
12 |
+
|
13 |
+
# Move the model to the device
|
14 |
+
model = model.to(device)
|
15 |
+
|
16 |
+
# Use Streamlit to upload an image
|
17 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"])
|
18 |
+
if uploaded_file is not None:
|
19 |
+
# Load and resize the image
|
20 |
+
image_size = (224, 224)
|
21 |
+
new_image = Image.open(uploaded_file).convert('RGB').resize(image_size)
|
22 |
+
new_image = np.array(new_image)
|
23 |
+
new_image = torch.from_numpy(new_image).transpose(0, 2).float().unsqueeze(0)
|
24 |
+
|
25 |
+
# Move the data to the device
|
26 |
+
new_image = new_image.to(device)
|
27 |
+
|
28 |
+
# Make predictions using the trained model
|
29 |
+
with torch.no_grad():
|
30 |
+
predictions = model(new_image)
|
31 |
+
logits = predictions.last_hidden_state
|
32 |
+
logits = logits.view(logits.shape[0], -1)
|
33 |
+
feature_reducer = nn.Linear(logits.shape[1], num_classes)
|
34 |
+
|
35 |
+
logits = logits.to(device)
|
36 |
+
feature_reducer = feature_reducer.to(device)
|
37 |
+
|
38 |
+
logits = feature_reducer(logits)
|
39 |
+
predicted_class = torch.argmax(logits, dim=1).item()
|
40 |
+
if(predicted_class == 0):
|
41 |
+
st.write('Predicted class: Parkinson\'s')
|
42 |
+
else:
|
43 |
+
st.write('Predicted class: Healthy')
|