Spaces:
Running
Running
# AUTOGENERATED! DO NOT EDIT! File to edit: ../weed_classifier.ipynb. | |
# %% auto 0 | |
__all__ = ['learn', 'labels', 'title', 'description', 'article', 'examples', 'interpretation', 'enable_queue', 'predict'] | |
# %% ../weed_classifier.ipynb 1 | |
from fastai.vision.all import * | |
import gradio as gr | |
import skimage | |
# %% ../weed_classifier.ipynb 2 | |
learn = load_learner('export.pkl') | |
# %% ../weed_classifier.ipynb 3 | |
labels = learn.dls.vocab | |
def predict(img): | |
img = PILImage.create(img) | |
pred,pred_idx,probs = learn.predict(img) | |
return {labels[i]: float(probs[i]) for i in range(len(labels))} | |
# %% ../weed_classifier.ipynb 5 | |
title = "Weed Classifier" | |
description = "A weed classifier trained on the Kaggle V2 Plant Seedling dataset with fastai. Dataset has mostly african weeds in it at the moment." | |
article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>" | |
examples = ['SugarBeet.png'] | |
interpretation='default' | |
enable_queue=True | |
gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,interpretation=interpretation).launch(enable_queue=enable_queue) | |