Spaces:
Sleeping
Sleeping
File size: 1,266 Bytes
dfbe641 27ee478 dfbe641 d21a4cc dfbe641 d21a4cc 27ee478 d21a4cc 27ee478 dfbe641 27ee478 dfbe641 27ee478 dfbe641 27ee478 dfbe641 27ee478 d21a4cc dfbe641 27ee478 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import numpy as np
import requests
import streamlit as st
#def main():
st.title("Scientific Question Generation")
checkpoints = ['dhmeltzer/bart-large_askscience-qg',
'dhmeltzer/flan-t5-base_askscience-qg',
'google/flan-t5-xxl']
headers = {"Authorization": f"Bearer {st.secrets['HF_token']}"}
def query(checkpoint, payload):
API_URL = f"https://api-inference.huggingface.co/models/{checkpoint}}"
response = requests.post(API_URL,
headers=headers,
json=payload)
return response.json()
# User search
user_input = st.text_area("Question Generator",
"""Black holes are the most gravitationally dense objects in the universe.""")
# Filters
st.sidebar.markdown("**Filters**")
temperature = st.sidebar.slider("Temperature", 0.0, 1.0, 0.0,.1)
vector = query([user_input])
if user_input:
for checkpoint in checkpoints:
output = query(checkpoint,{
"inputs": user_input,
"temperature":temperature,
"wait_for_model":True})[0][0]['generated_text']
model_name = checkpoints.split('/')[1]
st.write(f'Model {model_name}: output')
#if __name__ == "__main__":
# main()
|