Spaces:
Sleeping
Sleeping
File size: 2,153 Bytes
dfbe641 1d1bc23 dfbe641 27ee478 dfbe641 d21a4cc dfbe641 d21a4cc 1d1bc23 d21a4cc 1743c82 d21a4cc 27ee478 d21a4cc 27ee478 dfbe641 27ee478 dfbe641 27ee478 dfbe641 27ee478 dfbe641 27ee478 d21a4cc 3d891e3 1d1bc23 3d891e3 1d1bc23 df404d2 1d1bc23 d21a4cc 1d1bc23 df404d2 3d891e3 3979c35 dfbe641 1d1bc23 27ee478 1d1bc23 27ee478 df404d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
import numpy as np
import requests
import streamlit as st
import openai
#def main():
st.title("Scientific Question Generation")
checkpoints = ['dhmeltzer/bart-large_askscience-qg',
'dhmeltzer/flan-t5-base_askscience-qg',
'google/flan-t5-xxl']
headers = {"Authorization": f"Bearer {st.secrets['HF_token']}"}
openai.api_key = st.secrets['OpenAI_token']
def query(checkpoint, payload):
API_URL = f"https://api-inference.huggingface.co/models/{checkpoint}"
response = requests.post(API_URL,
headers=headers,
json=payload)
return response.json()
# User search
user_input = st.text_area("Question Generator",
"""Black holes are the most gravitationally dense objects in the universe.""")
# Filters
st.sidebar.markdown("**Filters**")
temperature = st.sidebar.slider("Temperature", 0.0, 1.0, 0.0,.1)
if user_input:
for checkpoint in checkpoints:
model_name = checkpoint.split('/')[1]
if 'flan' in model_name.lower():
prompt = 'generate a question: ' + user_input
output = query(checkpoint,{
"inputs": prompt,
"temperature":temperature,
"wait_for_model":True})
else:
prompt = user_input
output = query(checkpoint,{
"inputs": prompt,
"temperature":temperature,
"wait_for_model":True})
st.write(f'Model {model_name}: {output}')
model_engine = "gpt-3.5-turbo"
max_tokens = 50
prompt = f"generate a question: {user_input}"
response=openai.ChatCompletion.create(
model=model_engine,
messages=[
{"role": "system", "content": "You are a helpful assistant that generates questions from text."},
{"role": "user", "content": prompt},
])
output = response['choices'][0]['message']['content']
st.write(f'Model {model_engine}: {output}')
#if __name__ == "__main__":
# main()
#[0]['generated_text'] |