Spaces:
Sleeping
Sleeping
File size: 9,402 Bytes
ba4d86e 55eb78d ba4d86e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
# -*- coding: utf-8 -*-
"""Bert-redo
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1xVKmJy8iU8NHFsWav2SI2XFRh6QdvWV_
# Transformers for lyric Classification
Imports and Setup
"""
from google.colab import drive
drive.mount('/content/drive')
# !pip install transformers
import torch
# Confirm that the GPU is detected
if torch.cuda.is_available():
# Get the GPU device name.
device_name = torch.cuda.get_device_name()
n_gpu = torch.cuda.device_count()
print(f"Found device: {device_name}, n_gpu: {n_gpu}")
device = torch.device("cuda")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
import pandas as pd
import numpy as np
from tqdm import tqdm
import random
from transformers import BertTokenizer, BertForSequenceClassification
"""Read Data"""
train=pd.read_csv('/content/drive/MyDrive/cse256/project/data/train.csv')
val=pd.read_csv('/content/drive/MyDrive/cse256/project/data/validation.csv')
test=pd.read_csv('/content/drive/MyDrive/cse256/project/data/test.csv')
"""Utility Functions"""
def tokenize_and_format(sentences):
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True)
# Tokenize all of the sentences and map the tokens to thier word IDs.
input_ids = []
attention_masks = []
# For every sentence...
for sentence in sentences:
# `encode_plus` will:
# (1) Tokenize the sentence.
# (2) Prepend the `[CLS]` token to the start.
# (3) Append the `[SEP]` token to the end.
# (4) Map tokens to their IDs.
# (5) Pad or truncate the sentence to `max_length`
# (6) Create attention masks for [PAD] tokens.
encoded_dict = tokenizer.encode_plus(
sentence, # Sentence to encode.
add_special_tokens = True, # Add '[CLS]' and '[SEP]'
max_length = 256, # Pad & truncate all sentences.
padding = 'max_length',
truncation = True,
return_attention_mask = True, # Construct attn. masks.
return_tensors = 'pt', # Return pytorch tensors.
)
# Add the encoded sentence to the list.
input_ids.append(encoded_dict['input_ids'])
# And its attention mask (simply differentiates padding from non-padding).
attention_masks.append(encoded_dict['attention_mask'])
return input_ids, attention_masks
def get_input_and_labels(df):
input_ids, attention_masks = tokenize_and_format(df.lyrics.values)
input_ids = torch.cat(input_ids, dim=0)
attention_masks = torch.cat(attention_masks, dim=0)
labels = torch.tensor(df.mood_encoded.values)
return input_ids,attention_masks,labels
def flat_accuracy(preds, labels):
pred_flat = np.argmax(preds, axis=1).flatten()
labels_flat = labels.flatten()
return np.sum(pred_flat == labels_flat) / len(labels_flat)
"""Preprocess Data"""
X_train_iids,X_train_ams,y_train=get_input_and_labels(train)
X_val_iids,X_val_ams,y_val=get_input_and_labels(val)
X_test_iids,X_test_ams,y_test=get_input_and_labels(test)
train_set = [(X_train_iids[i], X_train_ams[i], y_train[i]) for i in range(len(y_train))]
val_set = [(X_val_iids[i], X_val_ams[i], y_val[i]) for i in range(len(y_val))]
test_set = [(X_test_iids[i], X_test_ams[i], y_test[i]) for i in range(len(y_test))]
train_text = [train.lyrics.values[i] for i in range(len(y_train))]
val_text = [val.lyrics.values[i] for i in range(len(y_val))]
test_text = [test.lyrics.values[i] for i in range(len(y_test))]
"""Initialize model and train"""
model = BertForSequenceClassification.from_pretrained(
"bert-base-uncased", # Use the 12-layer BERT model, with an uncased vocab.
num_labels = 4, # The number of output labels.
output_attentions = False, # Whether the model returns attentions weights.
output_hidden_states = False, # Whether the model returns all hidden-states.
)
model.cuda()
batch_size = 16
optimizer = torch.optim.AdamW(model.parameters(),
lr = 3e-5, # args.learning_rate - default is 5e-5
eps = 1e-8 # args.adam_epsilon - default is 1e-8
)
# scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, verbose=True, gamma=0.1)
epochs = 5
# function to get validation accuracy
def get_validation_performance(val_set):
# Put the model in evaluation mode
model.eval()
# Tracking variables
total_eval_accuracy = 0
total_eval_loss = 0
num_batches = int(len(val_set)/batch_size) + 1
total_correct = 0
for i in range(num_batches):
end_index = min(batch_size * (i+1), len(val_set))
batch = val_set[i*batch_size:end_index]
if len(batch) == 0: continue
input_id_tensors = torch.stack([data[0] for data in batch])
input_mask_tensors = torch.stack([data[1] for data in batch])
label_tensors = torch.stack([data[2] for data in batch])
# Move tensors to the GPU
b_input_ids = input_id_tensors.to(device)
b_input_mask = input_mask_tensors.to(device)
b_labels = label_tensors.to(device)
# Tell pytorch not to bother with constructing the compute graph during
# the forward pass, since this is only needed for backprop (training).
with torch.no_grad():
# Forward pass, calculate logit predictions.
outputs = model(b_input_ids,
token_type_ids=None,
attention_mask=b_input_mask,
labels=b_labels)
loss = outputs.loss
logits = outputs.logits
# Accumulate the validation loss.
total_eval_loss += loss.item()
# Move logits and labels to CPU
logits = logits.detach().cpu().numpy()
label_ids = b_labels.to('cpu').numpy()
# Calculate the number of correctly labeled examples in batch
pred_flat = np.argmax(logits, axis=1).flatten()
labels_flat = label_ids.flatten()
num_correct = np.sum(pred_flat == labels_flat)
total_correct += num_correct
# Report the final accuracy for this validation run.
avg_val_accuracy = total_correct / len(val_set)
return avg_val_accuracy
# training loop
# For each epoch...
for epoch_i in range(0, epochs):
# Perform one full pass over the training set.
print("")
print('======== Epoch {:} / {:} ========'.format(epoch_i + 1, epochs))
print('Training...')
# Reset the total loss for this epoch.
total_train_loss = 0
# Put the model into training mode.
model.train()
# For each batch of training data...
num_batches = int(len(train_set)/batch_size) + 1
for i in tqdm(range(num_batches)):
end_index = min(batch_size * (i+1), len(train_set))
batch = train_set[i*batch_size:end_index]
if len(batch) == 0: continue
input_id_tensors = torch.stack([data[0] for data in batch])
input_mask_tensors = torch.stack([data[1] for data in batch])
label_tensors = torch.stack([data[2] for data in batch])
# Move tensors to the GPU
b_input_ids = input_id_tensors.to(device)
b_input_mask = input_mask_tensors.to(device)
b_labels = label_tensors.to(device)
# Clear the previously calculated gradient
model.zero_grad()
# Perform a forward pass (evaluate the model on this training batch).
outputs = model(b_input_ids,
token_type_ids=None,
attention_mask=b_input_mask,
labels=b_labels)
loss = outputs.loss
logits = outputs.logits
total_train_loss += loss.item()
# Perform a backward pass to calculate the gradients.
loss.backward()
# Update parameters and take a step using the computed gradient.
optimizer.step()
# ========================================
# Validation
# ========================================
# After the completion of each training epoch, measure our performance on
# our validation set. Implement this function in the cell above.
print(f"Total loss: {total_train_loss}")
train_acc = get_validation_performance(train_set)
print(f"Train accuracy: {train_acc}")
val_acc = get_validation_performance(val_set)
print(f"Validation accuracy: {val_acc}")
# scheduler.step()
print("")
print("Training complete!")
"""Final Evaluation on Test Set"""
test_acc = get_validation_performance(test_set)
print(f"Test accuracy: {test_acc}")
"""Saving the model state for future inference"""
torch.save(model.state_dict(), '/content/drive/MyDrive/cse256/project/models/bert-mood-prediction-1.pt')
"""loading the model again (checking)"""
model = BertForSequenceClassification.from_pretrained(
"bert-base-uncased", # Use the 12-layer BERT model, with an uncased vocab.
num_labels = 4, # The number of output labels.
output_attentions = False, # Whether the model returns attentions weights.
output_hidden_states = False, # Whether the model returns all hidden-states.
)
model.load_state_dict(torch.load('/content/drive/MyDrive/cse256/project/models/bert-mood-prediction-1.pt'))
model.cuda()
model.eval()
test_acc = get_validation_performance(test_set)
print(test_acc)
|