Update app.py
Browse files
app.py
CHANGED
@@ -47,7 +47,46 @@ class SpeakerVerification:
|
|
47 |
probability = max(0.0, min(1.0, probability))
|
48 |
return probability
|
49 |
|
50 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
try:
|
52 |
wav_path1 = self.convert_audio(audio_path1)
|
53 |
wav_path2 = self.convert_audio(audio_path2)
|
@@ -63,11 +102,14 @@ class SpeakerVerification:
|
|
63 |
probability = self.score_to_probability(score_value)
|
64 |
decision = "Same speaker" if prediction.item() else "Different speakers"
|
65 |
|
66 |
-
|
|
|
|
|
|
|
67 |
|
68 |
except Exception as e:
|
69 |
print(f"Error in speaker verification: {str(e)}")
|
70 |
-
return 0.0, f"Error: {str(e)}"
|
71 |
|
72 |
def get_embeddings(self, audio_path: str):
|
73 |
wav_path = self.convert_audio(audio_path)
|
@@ -109,24 +151,30 @@ class SpeakerVerification:
|
|
109 |
def create_gradio_interface():
|
110 |
speaker_verifier = SpeakerVerification()
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
probability, decision, score = speaker_verifier.verify_speaker(audio1, audio2)
|
118 |
-
emb1 = speaker_verifier.get_embeddings(audio1)
|
119 |
-
emb2 = speaker_verifier.get_embeddings(audio2)
|
120 |
-
|
121 |
-
embeddings_plot = speaker_verifier.plot_embeddings_comparison(emb1, emb2)
|
122 |
-
|
123 |
-
#result_text = f"Probability: {probability:.2%}\nCosine similarity: {score}\nDecision: {decision}"
|
124 |
-
result_text = f"Cosine similarity (threshold for the model=0.25): {score}\nDecision: {decision}"
|
125 |
-
|
126 |
-
return result_text, embeddings_plot
|
127 |
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
interface = gr.Interface(
|
132 |
fn=process_audio,
|
|
|
47 |
probability = max(0.0, min(1.0, probability))
|
48 |
return probability
|
49 |
|
50 |
+
def calculate_confidence_metrics(self, score_value: float) -> dict:
|
51 |
+
"""Calculate various confidence metrics."""
|
52 |
+
try:
|
53 |
+
# Distance from threshold
|
54 |
+
threshold_distance = abs(score_value - self.threshold)
|
55 |
+
|
56 |
+
# Normalized confidence score (0-1 scale)
|
57 |
+
normalized_confidence = (score_value + 1) / 2
|
58 |
+
|
59 |
+
# Certainty score based on distance from decision boundary
|
60 |
+
certainty = 1 - (1 / (1 + np.exp(5 * threshold_distance)))
|
61 |
+
|
62 |
+
# Decision strength (how far from ambiguous region)
|
63 |
+
ambiguous_region = 0.1
|
64 |
+
if abs(score_value - self.threshold) < ambiguous_region:
|
65 |
+
decision_strength = "Low"
|
66 |
+
elif abs(score_value - self.threshold) < ambiguous_region * 2:
|
67 |
+
decision_strength = "Medium"
|
68 |
+
else:
|
69 |
+
decision_strength = "High"
|
70 |
+
|
71 |
+
# Confidence level categories
|
72 |
+
if certainty < 0.6:
|
73 |
+
confidence_level = "Low"
|
74 |
+
elif certainty < 0.8:
|
75 |
+
confidence_level = "Medium"
|
76 |
+
else:
|
77 |
+
confidence_level = "High"
|
78 |
+
|
79 |
+
return {
|
80 |
+
"certainty_score": certainty,
|
81 |
+
"threshold_distance": threshold_distance,
|
82 |
+
"decision_strength": decision_strength,
|
83 |
+
"confidence_level": confidence_level
|
84 |
+
}
|
85 |
+
except Exception as e:
|
86 |
+
print(f"Error calculating confidence metrics: {str(e)}")
|
87 |
+
return {}
|
88 |
+
|
89 |
+
def verify_speaker(self, audio_path1: str, audio_path2: str) -> tuple:
|
90 |
try:
|
91 |
wav_path1 = self.convert_audio(audio_path1)
|
92 |
wav_path2 = self.convert_audio(audio_path2)
|
|
|
102 |
probability = self.score_to_probability(score_value)
|
103 |
decision = "Same speaker" if prediction.item() else "Different speakers"
|
104 |
|
105 |
+
# Calculate confidence metrics
|
106 |
+
confidence_metrics = self.calculate_confidence_metrics(score_value)
|
107 |
+
|
108 |
+
return probability, decision, score_value, confidence_metrics
|
109 |
|
110 |
except Exception as e:
|
111 |
print(f"Error in speaker verification: {str(e)}")
|
112 |
+
return 0.0, f"Error: {str(e)}", 0.0, {}
|
113 |
|
114 |
def get_embeddings(self, audio_path: str):
|
115 |
wav_path = self.convert_audio(audio_path)
|
|
|
151 |
def create_gradio_interface():
|
152 |
speaker_verifier = SpeakerVerification()
|
153 |
|
154 |
+
def process_audio(audio1, audio2):
|
155 |
+
try:
|
156 |
+
if audio1 is None or audio2 is None:
|
157 |
+
return "Error: Please provide both audio samples", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
+
probability, decision, score, confidence_metrics = speaker_verifier.verify_speaker(audio1, audio2)
|
160 |
+
emb1 = speaker_verifier.get_embeddings(audio1)
|
161 |
+
emb2 = speaker_verifier.get_embeddings(audio2)
|
162 |
+
|
163 |
+
embeddings_plot = speaker_verifier.plot_embeddings_comparison(emb1, emb2)
|
164 |
+
|
165 |
+
result_text = (
|
166 |
+
f"Cosine similarity (threshold=0.25): {score:.3f}\n"
|
167 |
+
f"Decision: {decision}\n"
|
168 |
+
f"Certainty Score: {confidence_metrics['certainty_score']:.2f}\n"
|
169 |
+
f"Threshold Distance: {confidence_metrics['threshold_distance']:.3f}\n"
|
170 |
+
f"Decision Strength: {confidence_metrics['decision_strength']}\n"
|
171 |
+
f"Confidence Level: {confidence_metrics['confidence_level']}"
|
172 |
+
)
|
173 |
+
|
174 |
+
return result_text, embeddings_plot
|
175 |
+
|
176 |
+
except Exception as e:
|
177 |
+
return f"Error processing audio: {str(e)}", None
|
178 |
|
179 |
interface = gr.Interface(
|
180 |
fn=process_audio,
|