Spaces:
Runtime error
Runtime error
File size: 18,604 Bytes
58627fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
import os
import tqdm
import time
import ujson
import torch
import random
try:
import faiss
except ImportError as e:
print("WARNING: faiss must be imported for indexing")
import numpy as np
import torch.multiprocessing as mp
from colbert.infra.config.config import ColBERTConfig
import colbert.utils.distributed as distributed
from colbert.infra.run import Run
from colbert.infra.launcher import print_memory_stats
from colbert.modeling.checkpoint import Checkpoint
from colbert.data.collection import Collection
from colbert.indexing.collection_encoder import CollectionEncoder
from colbert.indexing.index_saver import IndexSaver
from colbert.indexing.utils import optimize_ivf
from colbert.utils.utils import flatten, print_message
from colbert.indexing.codecs.residual import ResidualCodec
def encode(config, collection, shared_lists, shared_queues):
encoder = CollectionIndexer(config=config, collection=collection)
encoder.run(shared_lists)
class CollectionIndexer():
def __init__(self, config: ColBERTConfig, collection):
self.config = config
self.rank, self.nranks = self.config.rank, self.config.nranks
self.use_gpu = self.config.total_visible_gpus > 0
if self.config.rank == 0:
self.config.help()
self.collection = Collection.cast(collection)
self.checkpoint = Checkpoint(self.config.checkpoint, colbert_config=self.config)
if self.use_gpu:
self.checkpoint = self.checkpoint.cuda()
self.encoder = CollectionEncoder(config, self.checkpoint)
self.saver = IndexSaver(config)
print_memory_stats(f'RANK:{self.rank}')
def run(self, shared_lists):
with torch.inference_mode():
self.setup()
distributed.barrier(self.rank)
print_memory_stats(f'RANK:{self.rank}')
if not self.config.resume or not self.saver.try_load_codec():
self.train(shared_lists)
distributed.barrier(self.rank)
print_memory_stats(f'RANK:{self.rank}')
self.index()
distributed.barrier(self.rank)
print_memory_stats(f'RANK:{self.rank}')
self.finalize()
distributed.barrier(self.rank)
print_memory_stats(f'RANK:{self.rank}')
def setup(self):
if self.config.resume:
if self._try_load_plan():
Run().print_main(f"#> Loaded plan from {self.plan_path}:")
Run().print_main(f"#> num_chunks = {self.num_chunks}")
Run().print_main(f"#> num_partitions = {self.num_chunks}")
Run().print_main(f"#> num_embeddings_est = {self.num_embeddings_est}")
Run().print_main(f"#> avg_doclen_est = {self.avg_doclen_est}")
return
self.num_chunks = int(np.ceil(len(self.collection) / self.collection.get_chunksize()))
sampled_pids = self._sample_pids()
avg_doclen_est = self._sample_embeddings(sampled_pids)
# Select the number of partitions
num_passages = len(self.collection)
self.num_embeddings_est = num_passages * avg_doclen_est
self.num_partitions = int(2 ** np.floor(np.log2(16 * np.sqrt(self.num_embeddings_est))))
Run().print_main(f'Creaing {self.num_partitions:,} partitions.')
Run().print_main(f'*Estimated* {int(self.num_embeddings_est):,} embeddings.')
self._save_plan()
def _sample_pids(self):
num_passages = len(self.collection)
# Simple alternative: < 100k: 100%, < 1M: 15%, < 10M: 7%, < 100M: 3%, > 100M: 1%
# Keep in mind that, say, 15% still means at least 100k.
# So the formula is max(100% * min(total, 100k), 15% * min(total, 1M), ...)
# Then we subsample the vectors to 100 * num_partitions
typical_doclen = 120 # let's keep sampling independent of the actual doc_maxlen
sampled_pids = 16 * np.sqrt(typical_doclen * num_passages)
# sampled_pids = int(2 ** np.floor(np.log2(1 + sampled_pids)))
sampled_pids = min(1 + int(sampled_pids), num_passages)
sampled_pids = random.sample(range(num_passages), sampled_pids)
Run().print_main(f"# of sampled PIDs = {len(sampled_pids)} \t sampled_pids[:3] = {sampled_pids[:3]}")
return set(sampled_pids)
def _sample_embeddings(self, sampled_pids):
local_pids = self.collection.enumerate(rank=self.rank)
local_sample = [passage for pid, passage in local_pids if pid in sampled_pids]
local_sample_embs, doclens = self.encoder.encode_passages(local_sample)
if torch.cuda.is_available():
self.num_sample_embs = torch.tensor([local_sample_embs.size(0)]).cuda()
torch.distributed.all_reduce(self.num_sample_embs)
avg_doclen_est = sum(doclens) / len(doclens) if doclens else 0
avg_doclen_est = torch.tensor([avg_doclen_est]).cuda()
torch.distributed.all_reduce(avg_doclen_est)
nonzero_ranks = torch.tensor([float(len(local_sample) > 0)]).cuda()
torch.distributed.all_reduce(nonzero_ranks)
else:
if torch.distributed.is_initialized():
self.num_sample_embs = torch.tensor([local_sample_embs.size(0)]).cpu()
torch.distributed.all_reduce(self.num_sample_embs)
avg_doclen_est = sum(doclens) / len(doclens) if doclens else 0
avg_doclen_est = torch.tensor([avg_doclen_est]).cpu()
torch.distributed.all_reduce(avg_doclen_est)
nonzero_ranks = torch.tensor([float(len(local_sample) > 0)]).cpu()
torch.distributed.all_reduce(nonzero_ranks)
else:
self.num_sample_embs = torch.tensor([local_sample_embs.size(0)]).cpu()
avg_doclen_est = sum(doclens) / len(doclens) if doclens else 0
avg_doclen_est = torch.tensor([avg_doclen_est]).cpu()
nonzero_ranks = torch.tensor([float(len(local_sample) > 0)]).cpu()
avg_doclen_est = avg_doclen_est.item() / nonzero_ranks.item()
self.avg_doclen_est = avg_doclen_est
Run().print(f'avg_doclen_est = {avg_doclen_est} \t len(local_sample) = {len(local_sample):,}')
torch.save(local_sample_embs.half(), os.path.join(self.config.index_path_, f'sample.{self.rank}.pt'))
return avg_doclen_est
def _try_load_plan(self):
config = self.config
self.plan_path = os.path.join(config.index_path_, 'plan.json')
if os.path.exists(self.plan_path):
with open(self.plan_path, 'r') as f:
try:
plan = ujson.load(f)
except Exception as e:
return False
if not ('num_chunks' in plan and
'num_partitions' in plan and
'num_embeddings_est' in plan and
'avg_doclen_est' in plan):
return False
# TODO: Verify config matches
self.num_chunks = plan['num_chunks']
self.num_partitions = plan['num_partitions']
self.num_embeddings_est = plan['num_embeddings_est']
self.avg_doclen_est = plan['avg_doclen_est']
return True
else:
return False
def _save_plan(self):
if self.rank < 1:
config = self.config
self.plan_path = os.path.join(config.index_path_, 'plan.json')
Run().print("#> Saving the indexing plan to", self.plan_path, "..")
with open(self.plan_path, 'w') as f:
d = {'config': config.export()}
d['num_chunks'] = self.num_chunks
d['num_partitions'] = self.num_partitions
d['num_embeddings_est'] = self.num_embeddings_est
d['avg_doclen_est'] = self.avg_doclen_est
f.write(ujson.dumps(d, indent=4) + '\n')
def train(self, shared_lists):
if self.rank > 0:
return
sample, heldout = self._concatenate_and_split_sample()
centroids = self._train_kmeans(sample, shared_lists)
print_memory_stats(f'RANK:{self.rank}')
del sample
bucket_cutoffs, bucket_weights, avg_residual = self._compute_avg_residual(centroids, heldout)
print_message(f'avg_residual = {avg_residual}')
codec = ResidualCodec(config=self.config, centroids=centroids, avg_residual=avg_residual,
bucket_cutoffs=bucket_cutoffs, bucket_weights=bucket_weights)
self.saver.save_codec(codec)
def _concatenate_and_split_sample(self):
print_memory_stats(f'***1*** \t RANK:{self.rank}')
# TODO: Allocate a float16 array. Load the samples from disk, copy to array.
sample = torch.empty(self.num_sample_embs, self.config.dim, dtype=torch.float16)
offset = 0
for r in range(self.nranks):
sub_sample_path = os.path.join(self.config.index_path_, f'sample.{r}.pt')
sub_sample = torch.load(sub_sample_path)
os.remove(sub_sample_path)
endpos = offset + sub_sample.size(0)
sample[offset:endpos] = sub_sample
offset = endpos
assert endpos == sample.size(0), (endpos, sample.size())
print_memory_stats(f'***2*** \t RANK:{self.rank}')
# Shuffle and split out a 5% "heldout" sub-sample [up to 50k elements]
sample = sample[torch.randperm(sample.size(0))]
print_memory_stats(f'***3*** \t RANK:{self.rank}')
heldout_fraction = 0.05
heldout_size = int(min(heldout_fraction * sample.size(0), 50_000))
sample, sample_heldout = sample.split([sample.size(0) - heldout_size, heldout_size], dim=0)
print_memory_stats(f'***4*** \t RANK:{self.rank}')
return sample, sample_heldout
def _train_kmeans(self, sample, shared_lists):
if self.use_gpu:
torch.cuda.empty_cache()
do_fork_for_faiss = False # set to True to free faiss GPU-0 memory at the cost of one more copy of `sample`.
args_ = [self.config.dim, self.num_partitions, self.config.kmeans_niters]
if do_fork_for_faiss:
# For this to work reliably, write the sample to disk. Pickle may not handle >4GB of data.
# Delete the sample file after work is done.
shared_lists[0][0] = sample
return_value_queue = mp.Queue()
args_ = args_ + [shared_lists, return_value_queue]
proc = mp.Process(target=compute_faiss_kmeans, args=args_)
proc.start()
centroids = return_value_queue.get()
proc.join()
else:
args_ = args_ + [[[sample]]]
centroids = compute_faiss_kmeans(*args_)
centroids = torch.nn.functional.normalize(centroids, dim=-1)
if self.use_gpu:
centroids = centroids.half()
else:
centroids = centroids.float()
return centroids
def _compute_avg_residual(self, centroids, heldout):
compressor = ResidualCodec(config=self.config, centroids=centroids, avg_residual=None)
heldout_reconstruct = compressor.compress_into_codes(heldout, out_device='cuda' if self.use_gpu else 'cpu')
heldout_reconstruct = compressor.lookup_centroids(heldout_reconstruct, out_device='cuda' if self.use_gpu else 'cpu')
if self.use_gpu:
heldout_avg_residual = heldout.cuda() - heldout_reconstruct
else:
heldout_avg_residual = heldout - heldout_reconstruct
avg_residual = torch.abs(heldout_avg_residual).mean(dim=0).cpu()
print([round(x, 3) for x in avg_residual.squeeze().tolist()])
num_options = 2 ** self.config.nbits
quantiles = torch.arange(0, num_options, device=heldout_avg_residual.device) * (1 / num_options)
bucket_cutoffs_quantiles, bucket_weights_quantiles = quantiles[1:], quantiles + (0.5 / num_options)
bucket_cutoffs = heldout_avg_residual.float().quantile(bucket_cutoffs_quantiles)
bucket_weights = heldout_avg_residual.float().quantile(bucket_weights_quantiles)
print_message(
f"#> Got bucket_cutoffs_quantiles = {bucket_cutoffs_quantiles} and bucket_weights_quantiles = {bucket_weights_quantiles}")
print_message(f"#> Got bucket_cutoffs = {bucket_cutoffs} and bucket_weights = {bucket_weights}")
return bucket_cutoffs, bucket_weights, avg_residual.mean()
# EVENTAULLY: Compare the above with non-heldout sample. If too different, we can do better!
# sample = sample[subsample_idxs]
# sample_reconstruct = get_centroids_for(centroids, sample)
# sample_avg_residual = (sample - sample_reconstruct).mean(dim=0)
def index(self):
with self.saver.thread():
batches = self.collection.enumerate_batches(rank=self.rank)
for chunk_idx, offset, passages in tqdm.tqdm(batches, disable=self.rank > 0):
if self.config.resume and self.saver.check_chunk_exists(chunk_idx):
Run().print_main(f"#> Found chunk {chunk_idx} in the index already, skipping encoding...")
continue
embs, doclens = self.encoder.encode_passages(passages)
if self.use_gpu:
assert embs.dtype == torch.float16
else:
assert embs.dtype == torch.float32
embs = embs.half()
Run().print_main(f"#> Saving chunk {chunk_idx}: \t {len(passages):,} passages "
f"and {embs.size(0):,} embeddings. From #{offset:,} onward.")
self.saver.save_chunk(chunk_idx, offset, embs, doclens)
del embs, doclens
def finalize(self):
if self.rank > 0:
return
self._check_all_files_are_saved()
self._collect_embedding_id_offset()
self._build_ivf()
self._update_metadata()
def _check_all_files_are_saved(self):
Run().print_main("#> Checking all files were saved...")
success = True
for chunk_idx in range(self.num_chunks):
if not self.saver.check_chunk_exists(chunk_idx):
success = False
Run().print_main(f"#> ERROR: Could not find chunk {chunk_idx}!")
#TODO: Fail here?
if success:
Run().print_main("Found all files!")
def _collect_embedding_id_offset(self):
passage_offset = 0
embedding_offset = 0
self.embedding_offsets = []
for chunk_idx in range(self.num_chunks):
metadata_path = os.path.join(self.config.index_path_, f'{chunk_idx}.metadata.json')
with open(metadata_path) as f:
chunk_metadata = ujson.load(f)
chunk_metadata['embedding_offset'] = embedding_offset
self.embedding_offsets.append(embedding_offset)
assert chunk_metadata['passage_offset'] == passage_offset, (chunk_idx, passage_offset, chunk_metadata)
passage_offset += chunk_metadata['num_passages']
embedding_offset += chunk_metadata['num_embeddings']
with open(metadata_path, 'w') as f:
f.write(ujson.dumps(chunk_metadata, indent=4) + '\n')
self.num_embeddings = embedding_offset
assert len(self.embedding_offsets) == self.num_chunks
def _build_ivf(self):
# Maybe we should several small IVFs? Every 250M embeddings, so that's every 1 GB.
# It would save *memory* here and *disk space* regarding the int64.
# But we'd have to decide how many IVFs to use during retrieval: many (loop) or one?
# A loop seems nice if we can find a size that's large enough for speed yet small enough to fit on GPU!
# Then it would help nicely for batching later: 1GB.
Run().print_main("#> Building IVF...")
codes = torch.empty(self.num_embeddings,)
print_memory_stats(f'RANK:{self.rank}')
Run().print_main("#> Loading codes...")
for chunk_idx in tqdm.tqdm(range(self.num_chunks)):
offset = self.embedding_offsets[chunk_idx]
chunk_codes = ResidualCodec.Embeddings.load_codes(self.config.index_path_, chunk_idx)
codes[offset:offset+chunk_codes.size(0)] = chunk_codes
assert offset+chunk_codes.size(0) == codes.size(0), (offset, chunk_codes.size(0), codes.size())
Run().print_main(f"Sorting codes...")
print_memory_stats(f'RANK:{self.rank}')
codes = codes.sort()
ivf, values = codes.indices, codes.values
print_memory_stats(f'RANK:{self.rank}')
Run().print_main(f"Getting unique codes...")
partitions, ivf_lengths = values.unique_consecutive(return_counts=True)
# All partitions should be non-empty. (We can use torch.histc otherwise.)
assert partitions.size(0) == self.num_partitions, (partitions.size(), self.num_partitions)
print_memory_stats(f'RANK:{self.rank}')
_, _ = optimize_ivf(ivf, ivf_lengths, self.config.index_path_)
def _update_metadata(self):
config = self.config
self.metadata_path = os.path.join(config.index_path_, 'metadata.json')
Run().print("#> Saving the indexing metadata to", self.metadata_path, "..")
with open(self.metadata_path, 'w') as f:
d = {'config': config.export()}
d['num_chunks'] = self.num_chunks
d['num_partitions'] = self.num_partitions
d['num_embeddings'] = self.num_embeddings
d['avg_doclen'] = self.num_embeddings / len(self.collection)
f.write(ujson.dumps(d, indent=4) + '\n')
def compute_faiss_kmeans(dim, num_partitions, kmeans_niters, shared_lists, return_value_queue=None):
use_gpu = torch.cuda.is_available()
kmeans = faiss.Kmeans(dim, num_partitions, niter=kmeans_niters, gpu=use_gpu, verbose=True, seed=123)
sample = shared_lists[0][0]
sample = sample.float().numpy()
kmeans.train(sample)
centroids = torch.from_numpy(kmeans.centroids)
print_memory_stats(f'RANK:0*')
if return_value_queue is not None:
return_value_queue.put(centroids)
return centroids
"""
TODOs:
1. Notice we're using self.config.bsize.
2. Consider saving/using heldout_avg_residual as a vector --- that is, using 128 averages!
3. Consider the operations with .cuda() tensors. Are all of them good for OOM?
"""
|