File size: 1,272 Bytes
58627fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import torch.nn as nn

from transformers import ElectraPreTrainedModel, ElectraModel, AutoTokenizer

class ElectraReranker(ElectraPreTrainedModel):
    """
        Shallow wrapper around HuggingFace transformers. All new parameters should be defined at this level.
        
        This makes sure `{from,save}_pretrained` and `init_weights` are applied to new parameters correctly.
    """
    _keys_to_ignore_on_load_unexpected = [r"cls"]

    def __init__(self, config):
        super().__init__(config)

        self.electra = ElectraModel(config)
        self.linear = nn.Linear(config.hidden_size, 1)
        self.raw_tokenizer = AutoTokenizer.from_pretrained('google/electra-large-discriminator')

        self.init_weights()

    def forward(self, encoding):
        outputs = self.electra(encoding.input_ids,
                               attention_mask=encoding.attention_mask,
                               token_type_ids=encoding.token_type_ids)[0]

        scores = self.linear(outputs[:, 0]).squeeze(-1)

        return scores
    
    def save(self, path):
        assert not path.endswith('.dnn'), f"{path}: We reserve *.dnn names for the deprecated checkpoint format."

        self.save_pretrained(path)
        self.raw_tokenizer.save_pretrained(path)