File size: 7,170 Bytes
58627fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
from struct import pack
import torch
from torch._C import device

from colbert.utils.utils import flatten, print_message

from .strided_tensor_core import StridedTensorCore, _create_mask, _create_view

import os
import pathlib
from torch.utils.cpp_extension import load


class StridedTensor(StridedTensorCore):
    def __init__(self, packed_tensor, lengths, dim=None, use_gpu=True):
        super().__init__(packed_tensor, lengths, dim=dim, use_gpu=use_gpu)

        StridedTensor.try_load_torch_extensions(use_gpu)

    @classmethod
    def try_load_torch_extensions(cls, use_gpu):
        if hasattr(cls, "loaded_extensions") or use_gpu:
            return

        print_message(f"Loading segmented_lookup_cpp extension (set COLBERT_LOAD_TORCH_EXTENSION_VERBOSE=True for more info)...")
        segmented_lookup_cpp = load(
            name="segmented_lookup_cpp",
            sources=[
                os.path.join(
                    pathlib.Path(__file__).parent.resolve(), "segmented_lookup.cpp"
                ),
            ],
            extra_cflags=["-O3"],
            verbose=os.getenv("COLBERT_LOAD_TORCH_EXTENSION_VERBOSE", "False") == "True",
        )
        cls.segmented_lookup = segmented_lookup_cpp.segmented_lookup_cpp

        cls.loaded_extensions = True

    @classmethod
    def pad_packed(cls, packed_tensor, lengths):
        assert False, "This seems to be incorrect but I can't see why. Is it the inner_dims in the views?"

        packed_tensor, lengths = packed_tensor.cuda().contiguous(), lengths.cuda()

        inner_dims = packed_tensor.size()[1:]
        stride = lengths.max().item()
        offsets = torch.cumsum(lengths, dim=0) - lengths[0]

        padding = torch.zeros(stride, *inner_dims, device=packed_tensor.device, dtype=packed_tensor.dtype)
        packed_tensor = torch.cat((packed_tensor, padding))

        view = _create_view(packed_tensor, stride, inner_dims)[offsets]
        mask = _create_mask(lengths, stride, like=view)

        return view, mask

    def _prepare_lookup(self, pids):
        if isinstance(pids, list):
            pids = torch.tensor(pids)

        assert pids.dim() == 1

        if self.use_gpu:
            pids = pids.cuda()
        pids = pids.long()
        lengths = self.lengths[pids]
        if self.use_gpu:
            lengths = lengths.cuda()
        offsets = self.offsets[pids]

        return pids, lengths, offsets

    def lookup(self, pids, output='packed'):
        pids, lengths, offsets = self._prepare_lookup(pids)

        if self.use_gpu:
            stride = lengths.max().item()
            stride = next(s for s in self.strides if stride <= s)

            tensor = self.views[stride][offsets]
            if self.use_gpu:
                tensor = tensor.cuda()

            mask = _create_mask(lengths, stride, use_gpu=self.use_gpu)

            if output == 'padded':
                return tensor, mask

            assert output == 'packed'

            tensor = tensor[mask]
        else:
            tensor = StridedTensor.segmented_lookup(self.tensor, pids, lengths, offsets)

        return tensor, lengths

    def lookup_staggered(self, pids, output='packed'):
        permute_idxs, unordered_tensors, unordered_lengths, unordered_masks = self.lookup_packed_unordered(pids)

        output_tensor = torch.empty(permute_idxs.size(0), self.max_stride, *self.inner_dims,
                                    dtype=unordered_tensors[0].dtype, device=unordered_tensors[0].device)

        output_mask = torch.zeros(permute_idxs.size(0), self.max_stride,
                                  dtype=unordered_masks[0].dtype, device=unordered_masks[0].device)

        offset = 0
        for tensor, mask in zip(unordered_tensors, unordered_masks):
            endpos = offset + tensor.size(0)
            output_tensor[offset:endpos, :tensor.size(1)] = tensor
            output_mask[offset:endpos, :mask.size(1)] = mask
            offset = endpos

        output_mask = output_mask[permute_idxs]
        output_tensor = output_tensor[permute_idxs]

        if output == 'padded':
            return output_tensor, output_mask

        assert output == 'packed'

        output_tensor = output_tensor[output_mask]

        return output_tensor, unordered_lengths[permute_idxs]

    def lookup_packed_unordered(self, pids):
        pids, lengths, offsets = self._prepare_lookup(pids)

        lengths2 = lengths.clone()
        sentinel = self.strides[-1] + 1
        order = torch.arange(pids.size(0), device='cuda' if self.use_gpu else 'cpu')

        all_orders = []
        all_tensors = []
        all_lengths = []
        all_masks = []

        for stride in self.strides:
            is_shorter = lengths2 <= stride

            if is_shorter.sum() == 0:
                continue

            order_ = order[is_shorter]
            tensor_, lengths_, mask_ = self._lookup_with_stride(stride, lengths[is_shorter], offsets[is_shorter])

            all_orders.append(order_)
            all_tensors.append(tensor_)
            all_lengths.append(lengths_)
            all_masks.append(mask_)

            lengths2[is_shorter] = sentinel

        assert lengths2.allclose(torch.tensor([sentinel], device='cuda' if self.use_gpu else 'cpu'))

        all_orders = torch.cat(all_orders)
        permute_idxs = torch.sort(all_orders).indices

        return permute_idxs, all_tensors, torch.cat(all_lengths), all_masks

    def _lookup_with_stride(self, stride, lengths, offsets):
        tensor = self.views[stride][offsets]
        if self.use_gpu:
            tensor = tensor.cuda()

        mask = _create_mask(lengths, stride, use_gpu=self.use_gpu)
        # tensor = tensor[mask]

        return tensor, lengths, mask


if __name__ == '__main__':
    # lst = []
    # for _ in range(10):
    #     lst.append(list(range(random.randint(0, 10))))

    # print(lst)

    # t = StridedTensor.from_nested_list(lst)
    # print(t.lookup([9]))

    import os
    import pickle

    index_path = '/future/u/okhattab/root/unit/indexes/2021/08/residual.NQ-micro'
    with open(os.path.join(index_path, "centroid_idx_to_embedding_ids.pickle"), "rb") as f:
        ivf_list = pickle.load(f)

    assert len(ivf_list) == max(ivf_list.keys()) + 1
    ivf_list = [ivf_list[i] for i in range(len(ivf_list))]

    for x in ivf_list:
        assert type(x) is list
        assert type(x[0]) is int

    ncentroids = len(ivf_list)

    ivf = StridedTensor.from_nested_list(ivf_list)

    import time

    torch.cuda.synchronize()
    t = time.time()

    N = 100
    for _ in range(N):
        probed_centroids = torch.randint(0, ncentroids, size=(32, 8)).flatten()
        emb_ids, emb_ids_lengths = ivf.lookup(probed_centroids).as_packed_tensor()

    torch.cuda.synchronize()
    print((time.time() - t) * 1000 / N, 'ms')

    print(emb_ids_lengths)

    slow_result = flatten([ivf_list[idx] for idx in probed_centroids.flatten().tolist()])
    print(emb_ids.size(), len(slow_result))

    for a, b in zip(slow_result, emb_ids.flatten().tolist()):
        assert a == b, (a, b)

    print("#> Done!")

    print(ivf.lookup(probed_centroids).as_padded_tensor()[0].size())