Spaces:
Runtime error
Runtime error
File size: 7,170 Bytes
58627fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
from struct import pack
import torch
from torch._C import device
from colbert.utils.utils import flatten, print_message
from .strided_tensor_core import StridedTensorCore, _create_mask, _create_view
import os
import pathlib
from torch.utils.cpp_extension import load
class StridedTensor(StridedTensorCore):
def __init__(self, packed_tensor, lengths, dim=None, use_gpu=True):
super().__init__(packed_tensor, lengths, dim=dim, use_gpu=use_gpu)
StridedTensor.try_load_torch_extensions(use_gpu)
@classmethod
def try_load_torch_extensions(cls, use_gpu):
if hasattr(cls, "loaded_extensions") or use_gpu:
return
print_message(f"Loading segmented_lookup_cpp extension (set COLBERT_LOAD_TORCH_EXTENSION_VERBOSE=True for more info)...")
segmented_lookup_cpp = load(
name="segmented_lookup_cpp",
sources=[
os.path.join(
pathlib.Path(__file__).parent.resolve(), "segmented_lookup.cpp"
),
],
extra_cflags=["-O3"],
verbose=os.getenv("COLBERT_LOAD_TORCH_EXTENSION_VERBOSE", "False") == "True",
)
cls.segmented_lookup = segmented_lookup_cpp.segmented_lookup_cpp
cls.loaded_extensions = True
@classmethod
def pad_packed(cls, packed_tensor, lengths):
assert False, "This seems to be incorrect but I can't see why. Is it the inner_dims in the views?"
packed_tensor, lengths = packed_tensor.cuda().contiguous(), lengths.cuda()
inner_dims = packed_tensor.size()[1:]
stride = lengths.max().item()
offsets = torch.cumsum(lengths, dim=0) - lengths[0]
padding = torch.zeros(stride, *inner_dims, device=packed_tensor.device, dtype=packed_tensor.dtype)
packed_tensor = torch.cat((packed_tensor, padding))
view = _create_view(packed_tensor, stride, inner_dims)[offsets]
mask = _create_mask(lengths, stride, like=view)
return view, mask
def _prepare_lookup(self, pids):
if isinstance(pids, list):
pids = torch.tensor(pids)
assert pids.dim() == 1
if self.use_gpu:
pids = pids.cuda()
pids = pids.long()
lengths = self.lengths[pids]
if self.use_gpu:
lengths = lengths.cuda()
offsets = self.offsets[pids]
return pids, lengths, offsets
def lookup(self, pids, output='packed'):
pids, lengths, offsets = self._prepare_lookup(pids)
if self.use_gpu:
stride = lengths.max().item()
stride = next(s for s in self.strides if stride <= s)
tensor = self.views[stride][offsets]
if self.use_gpu:
tensor = tensor.cuda()
mask = _create_mask(lengths, stride, use_gpu=self.use_gpu)
if output == 'padded':
return tensor, mask
assert output == 'packed'
tensor = tensor[mask]
else:
tensor = StridedTensor.segmented_lookup(self.tensor, pids, lengths, offsets)
return tensor, lengths
def lookup_staggered(self, pids, output='packed'):
permute_idxs, unordered_tensors, unordered_lengths, unordered_masks = self.lookup_packed_unordered(pids)
output_tensor = torch.empty(permute_idxs.size(0), self.max_stride, *self.inner_dims,
dtype=unordered_tensors[0].dtype, device=unordered_tensors[0].device)
output_mask = torch.zeros(permute_idxs.size(0), self.max_stride,
dtype=unordered_masks[0].dtype, device=unordered_masks[0].device)
offset = 0
for tensor, mask in zip(unordered_tensors, unordered_masks):
endpos = offset + tensor.size(0)
output_tensor[offset:endpos, :tensor.size(1)] = tensor
output_mask[offset:endpos, :mask.size(1)] = mask
offset = endpos
output_mask = output_mask[permute_idxs]
output_tensor = output_tensor[permute_idxs]
if output == 'padded':
return output_tensor, output_mask
assert output == 'packed'
output_tensor = output_tensor[output_mask]
return output_tensor, unordered_lengths[permute_idxs]
def lookup_packed_unordered(self, pids):
pids, lengths, offsets = self._prepare_lookup(pids)
lengths2 = lengths.clone()
sentinel = self.strides[-1] + 1
order = torch.arange(pids.size(0), device='cuda' if self.use_gpu else 'cpu')
all_orders = []
all_tensors = []
all_lengths = []
all_masks = []
for stride in self.strides:
is_shorter = lengths2 <= stride
if is_shorter.sum() == 0:
continue
order_ = order[is_shorter]
tensor_, lengths_, mask_ = self._lookup_with_stride(stride, lengths[is_shorter], offsets[is_shorter])
all_orders.append(order_)
all_tensors.append(tensor_)
all_lengths.append(lengths_)
all_masks.append(mask_)
lengths2[is_shorter] = sentinel
assert lengths2.allclose(torch.tensor([sentinel], device='cuda' if self.use_gpu else 'cpu'))
all_orders = torch.cat(all_orders)
permute_idxs = torch.sort(all_orders).indices
return permute_idxs, all_tensors, torch.cat(all_lengths), all_masks
def _lookup_with_stride(self, stride, lengths, offsets):
tensor = self.views[stride][offsets]
if self.use_gpu:
tensor = tensor.cuda()
mask = _create_mask(lengths, stride, use_gpu=self.use_gpu)
# tensor = tensor[mask]
return tensor, lengths, mask
if __name__ == '__main__':
# lst = []
# for _ in range(10):
# lst.append(list(range(random.randint(0, 10))))
# print(lst)
# t = StridedTensor.from_nested_list(lst)
# print(t.lookup([9]))
import os
import pickle
index_path = '/future/u/okhattab/root/unit/indexes/2021/08/residual.NQ-micro'
with open(os.path.join(index_path, "centroid_idx_to_embedding_ids.pickle"), "rb") as f:
ivf_list = pickle.load(f)
assert len(ivf_list) == max(ivf_list.keys()) + 1
ivf_list = [ivf_list[i] for i in range(len(ivf_list))]
for x in ivf_list:
assert type(x) is list
assert type(x[0]) is int
ncentroids = len(ivf_list)
ivf = StridedTensor.from_nested_list(ivf_list)
import time
torch.cuda.synchronize()
t = time.time()
N = 100
for _ in range(N):
probed_centroids = torch.randint(0, ncentroids, size=(32, 8)).flatten()
emb_ids, emb_ids_lengths = ivf.lookup(probed_centroids).as_packed_tensor()
torch.cuda.synchronize()
print((time.time() - t) * 1000 / N, 'ms')
print(emb_ids_lengths)
slow_result = flatten([ivf_list[idx] for idx in probed_centroids.flatten().tolist()])
print(emb_ids.size(), len(slow_result))
for a, b in zip(slow_result, emb_ids.flatten().tolist()):
assert a == b, (a, b)
print("#> Done!")
print(ivf.lookup(probed_centroids).as_padded_tensor()[0].size())
|