kamilakesbi commited on
Commit
2cbde18
1 Parent(s): f20db24

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -7
README.md CHANGED
@@ -13,11 +13,19 @@ pinned: false
13
 
14
  The available datasets are the CallHome (Japanese, Chinese, German, Spanish, English), AMI Corpus (English), Vox-Converse (English) and Simsamu (French). We aim to add more datasets in the future to better support speaker diarising on the Hub.
15
 
16
- - A collection of multilingual [fine-tuned segmentation model](https://huggingface.co/collections/diarizers-community/models-66261d0f9277b825c807ff2a) baselines compatible with pyannote.
17
 
18
- Each model has been fine-tuned on a specific Callhome language subset. They achieve better performances on multilingual data compared to pyannote's pre-trained [segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) model:
 
 
 
 
 
 
19
 
20
 
 
 
21
  | [Callhome](https://huggingface.co/datasets/diarizers-community/callhome) test dataset subset| Model | DER | False alarm | Missed detection| Confusion |
22
  | ------------------------| ------------- | ------------- | ------------- | --------------- | ------------- |
23
  | Japanese | [Pretrained](https://huggingface.co/pyannote/segmentation-3.0) | 25.44 | **2.30** | 17.45 | 5.69 |
@@ -33,11 +41,6 @@ Each model has been fine-tuned on a specific Callhome language subset. They achi
33
 
34
  Results are in %. They have been obtained using the [test script](https://github.com/kamilakesbi/diarizers/blob/main/test_segmentation.py) from diarizers.
35
 
36
- Together with diarizers-community, we release:
37
-
38
- - [diarizers](https://github.com/kamilakesbi/diarizers/tree/main), a library for fine-tuning pyannote speaker diarization models using the Hugging Face ecosystem.
39
-
40
- - A google colab [notebook](https://colab.research.google.com/github/kamilakesbi/notebooks/blob/main/fine_tune_pyannote.ipynb), with a step-by-step guide on how to use diarizers.
41
 
42
 
43
  Edit this `README.md` markdown file to author your organization card.
 
13
 
14
  The available datasets are the CallHome (Japanese, Chinese, German, Spanish, English), AMI Corpus (English), Vox-Converse (English) and Simsamu (French). We aim to add more datasets in the future to better support speaker diarising on the Hub.
15
 
16
+ - A collection of multilingual [fine-tuned segmentation model](https://huggingface.co/collections/diarizers-community/models-66261d0f9277b825c807ff2a) baselines compatible with pyannote.
17
 
18
+ Each model has been fine-tuned on a specific Callhome language subset. They achieve better performances on multilingual data compared to pyannote's pre-trained [segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) model (see benchmark for more details on model performance).
19
+
20
+ Together with diarizers-community, we release:
21
+
22
+ - [diarizers](https://github.com/kamilakesbi/diarizers/tree/main), a library for fine-tuning pyannote speaker diarization models using the Hugging Face ecosystem.
23
+
24
+ - A google colab [notebook](https://colab.research.google.com/github/kamilakesbi/notebooks/blob/main/fine_tune_pyannote.ipynb), with a step-by-step guide on how to use diarizers.
25
 
26
 
27
+ ** Benchamrk: **
28
+
29
  | [Callhome](https://huggingface.co/datasets/diarizers-community/callhome) test dataset subset| Model | DER | False alarm | Missed detection| Confusion |
30
  | ------------------------| ------------- | ------------- | ------------- | --------------- | ------------- |
31
  | Japanese | [Pretrained](https://huggingface.co/pyannote/segmentation-3.0) | 25.44 | **2.30** | 17.45 | 5.69 |
 
41
 
42
  Results are in %. They have been obtained using the [test script](https://github.com/kamilakesbi/diarizers/blob/main/test_segmentation.py) from diarizers.
43
 
 
 
 
 
 
44
 
45
 
46
  Edit this `README.md` markdown file to author your organization card.