3v324v23's picture
wip
82e6525
###############################################################################
# Shiny App: San Francisco Biodiversity Access Decision Support Tool
# Author: Diego Ellis Soto, et al.
# University of California Berkeley, ESPM
# California Academy of Sciences
###############################################################################
require(shinyjs)
library(shiny)
library(shinydashboard)
library(leaflet)
library(mapboxapi)
library(tidyverse)
library(tidycensus)
library(sf)
library(DT)
library(RColorBrewer)
library(terra)
library(data.table)
library(mapview)
library(sjPlot)
library(sjlabelled)
library(bslib)
library(shinycssloaders)
source('R/setup.R') # Load necessary data (annotated gbif, annotated cbg, ndvi)
# Define your Mapbox token securely
mapbox_token <- "pk.eyJ1Ijoia3dhbGtlcnRjdSIsImEiOiJjbHc3NmI0cDMxYzhyMmt0OXBiYnltMjVtIn0.Thtu6WqIhOfin6AykskM2g"
# Global theme definition using a green-themed bootswatch
theme <- bs_theme(
bootswatch = "minty", # 'minty' is a light green-themed bootswatch
base_font = font_google("Roboto"),
heading_font = font_google("Roboto Slab"),
bg = "#f0fff0", # Honeydew background
fg = "#2e8b57" # SeaGreen foreground
)
# UI
ui <- dashboardPage(
skin = "green", # shinydashboard skin color
dashboardHeader(title = "SF Biodiversity Access Tool"
),
dashboardSidebar(
sidebarMenu(
menuItem("Isochrone Explorer", tabName = "isochrone", icon = icon("map-marker-alt")),
menuItem("GBIF Summaries", tabName = "gbif", icon = icon("table")),
menuItem("Community Science", tabName = "community_science", icon = icon("users")),
menuItem("About", tabName = "about", icon = icon("info-circle"))
)
),
dashboardBody(
theme = theme, # Apply the custom theme
useShinyjs(),
# Loading message
div(id = "loading", style = "display:none; font-size: 20px; color: red;", "Calculating..."),
# fluidRow(
# column(
# width = 2,
# imageOutput("Combined_logos")
# )
# ),
# fluidPage(
# box(
# tags$img(height = 100, width = 100,src = "Combined_logos.png"),
# imageOutput('Combined_logos')
# )
# ),
# fluidRow(
# column(
# width = 2,
# imageOutput("uc_berkeley_logo")
# ),
# column(
# width = 4,
# imageOutput("california_academy_logo")
# ),
# column(
# width = 6,
# imageOutput("reimagining_sf_logo")
# )
# ),
# fluidPage(
# # Application title
# # titlePanel("Test app"),
# # to render images in the www folder
# box(uiOutput("houz"), width = 3)
# ),
#
# fluidRow(
# column(
# width = 12, align = "center",
# tags$img(src = "UC_Berkeley_logo.png",
# height = "200px", style = "margin:10px;", alt = "UC Berkeley Logo"),
# tags$img(src = "California_academy_logo.png",
# height = "200px", style = "margin:10px;", alt = "California Academy Logo"),
# tags$img(src = "Reimagining_San_Francisco.png",
# height = "200px", style = "margin:10px;", alt = "Reimagining San Francisco Logo")
# )
# ),
# fluidPage(
# box(
# tags$img(height = 100, width = 100,src = "Rlogo.png"),
# imageOutput('image_logos')
# )
# ),
# Tab Items
tabItems(
# Isochrone Explorer Tab
tabItem(tabName = "isochrone",
fluidRow(
box(
title = "Controls", status = "success", solidHeader = TRUE, width = 4,
radioButtons(
"location_choice",
"Select Location Method:",
choices = c("Address (Geocode)" = "address",
"Click on Map" = "map_click"),
selected = "map_click"
),
conditionalPanel(
condition = "input.location_choice == 'address'",
mapboxGeocoderInput(
inputId = "geocoder",
placeholder = "Search for an address",
access_token = mapbox_token
)
),
checkboxGroupInput(
"transport_modes",
"Select Transportation Modes:",
choices = list("Driving" = "driving",
"Walking" = "walking",
"Cycling" = "cycling",
"Driving with Traffic"= "driving-traffic"),
selected = c("driving", "walking")
),
checkboxGroupInput(
"iso_times",
"Select Isochrone Times (minutes):",
choices = list("5" = 5, "10" = 10, "15" = 15),
selected = c(5, 10)
),
actionButton("generate_iso", "Generate Isochrones", icon = icon("play")),
actionButton("clear_map", "Clear", icon = icon("times"))
),
box(
title = "Map", status = "success", solidHeader = TRUE, width = 8,
leafletOutput("isoMap", height = 600)
)
),
fluidRow(
box(
title = "Biodiversity Access Score", status = "success", solidHeader = TRUE, width = 6,
uiOutput("bioScoreBox")
),
box(
title = "Closest Greenspace", status = "success", solidHeader = TRUE, width = 6,
uiOutput("closestGreenspaceUI")
)
),
fluidRow(
box(
title = "Summary Data", status = "success", solidHeader = TRUE, width = 12,
DTOutput("dataTable") %>% withSpinner(type = 8, color = "#28a745")
)
),
fluidRow(
box(
title = "Biodiversity & Socioeconomic Summary", status = "success", solidHeader = TRUE, width = 12,
plotOutput("bioSocPlot", height = "400px") %>% withSpinner(type = 8, color = "#28a745")
)
),
fluidRow(
box(
title = "GBIF Records by Institution", status = "success", solidHeader = TRUE, width = 12,
plotOutput("collectionPlot", height = "400px") %>% withSpinner(type = 8, color = "#28a745")
)
)
),
# GBIF Summaries Tab
tabItem(tabName = "gbif",
fluidRow(
box(
title = "Filters", status = "success", solidHeader = TRUE, width = 4,
selectInput(
"class_filter",
"Select a GBIF Class to Summarize:",
choices = c("All", sort(unique(sf_gbif$class))),
selected = "All"
),
selectInput(
"family_filter",
"Filter by Family (optional):",
choices = c("All", sort(unique(sf_gbif$family))),
selected = "All"
)
),
box(
title = "Data Summary", status = "success", solidHeader = TRUE, width = 8,
DTOutput("classTable")
)
),
fluidRow(
box(
title = "Observations vs. Species Richness", status = "success", solidHeader = TRUE, width = 12,
plotOutput("obsVsSpeciesPlot", height = "300px") %>% withSpinner(type = 8, color = "#28a745"),
p("This plot displays the relationship between the number of observations and the species richness. Use this visualization to understand data coverage and biodiversity trends.")
)
)
),
# Community Science Tab
tabItem(tabName = "community_science",
fluidRow(
box(
title = "Partner Community Organizations", status = "success", solidHeader = TRUE, width = 12,
leafletOutput("communityMap", height = 600)
)
),
fluidRow(
box(
title = "Community Organizations Data", status = "success", solidHeader = TRUE, width = 12,
DTOutput("communityTable") %>% withSpinner(type = 8, color = "#28a745")
)
)
),
# About Tab
tabItem(tabName = "about",
fluidRow(
box(
title = "App Summary", status = "success", solidHeader = TRUE, width = 12,
tags$b("App Summary (Fill out with RSF data working group):"),
p("
This application allows users to either click on a map or geocode an address
to generate travel-time isochrones across multiple transportation modes
(e.g., pedestrian, cycling, driving, driving during traffic).
It retrieves socio-economic data from precomputed Census variables, calculates NDVI,
and summarizes biodiversity records from GBIF. Users can explore information
related to biodiversity in urban environments, including greenspace coverage,
population estimates, and species diversity within each isochrone.
"),
tags$b("Created by:"),
p(strong("Diego Ellis Soto", "Carl Boettiger, Rebecca Johnson, Christopher J. Schell")),
p("Contact Information: ", strong("[email protected]"))
)
),
fluidRow(
box(
title = "Reimagining San Francisco", status = "success", solidHeader = TRUE, width = 12,
tags$b("Reimagining San Francisco (Fill out with CAS):"),
p("Reimagining San Francisco is an initiative aimed at integrating ecological, social,
and technological dimensions to shape a sustainable future for the Bay Area.
This collaboration unites diverse stakeholders to explore innovations in urban planning,
conservation, and community engagement. The Reimagining San Francisco Data Working Group has been tasked with identifying and integrating multiple sources of socio-ecological biodiversity information in a co-development framework.")
)
),
fluidRow(
box(
title = "Why Biodiversity Access Matters", status = "success", solidHeader = TRUE, width = 12,
p("Ensuring equitable access to biodiversity is essential for human well-being,
ecological resilience, and global policy decisions related to conservation.
Areas with higher biodiversity can support ecosystem services including pollinators, moderate climate extremes,
and provide cultural, recreational, and health benefits to local communities.
Recognizing that cities are particularly complex socio-ecological systems facing both legacies of sociocultural practices as well as current ongoing dynamic human activities and pressures.
Incorporating multiple facets of biodiversity metrics alongside variables employed by city planners, human geographers, and decision-makers into urban planning will allow a more integrative lens in creating a sustainable future for cities and their residents.")
)
),
fluidRow(
box(
title = "How We Calculate Biodiversity Access Percentile", status = "success", solidHeader = TRUE, width = 12,
p("Total unique species found within the user-generated isochrone.
We then compare that value to the distribution of unique species counts across all census block groups,
converting that comparison into a percentile ranking (Polish this, look at the 15 Minute city).
A higher percentile indicates greater biodiversity within the chosen area,
relative to other parts of the city or region.")
)
),
fluidRow(
box(
title = "Next Steps", status = "success", solidHeader = TRUE, width = 12,
tags$ul(
tags$li("Add impervious surface"),
tags$li("National walkability score"),
tags$li("Social vulnerability score"),
tags$li("NatureServe biodiversity maps"),
tags$li("Calculate cold-hotspots within aggregation of H6 bins instead of by census block group: Ask Carl"),
tags$li("Species range maps"),
tags$li("Add common name GBIF"),
tags$li("Partner orgs"),
tags$li("Optimize speed -> store variables -> H-ify the world?"),
tags$li("Brainstorm and co-develop the biodiversity access score"),
tags$li("For the GBIF summaries, add an annotated GBIF_sf with environmental variables so we can see landcover type association across the biodiversity within the isochrone.")
)
)
)
)
)
)
)
# ------------------------------------------------
# Server
# ------------------------------------------------
server <- function(input, output, session) {
chosen_point <- reactiveVal(NULL)
# ------------------------------------------------
# Render logos
# ------------------------------------------------
output$combine_logo <- renderImage({
list(
src = file.path("www", "Combined_logos.png"),
width = "50%",
height = "45%",
alt = "Combined_logos"
)
}, deleteFile = FALSE)
# output$uc_berkeley_logo <- renderImage({
# list(
# src = file.path("www", "UC_Berkeley_logo.png"),
# width = "50%",
# height = "45%",
# alt = "UC Berkeley Logo"
# )
# }, deleteFile = FALSE)
#
# output$california_academy_logo <- renderImage({
# list(
# src = file.path("www", "California_academy_logo.png"),
# width = "50%",
# height = "45%",
# alt = "California Academy Logo"
# )
# }, deleteFile = FALSE)
#
# output$reimagining_sf_logo <- renderImage({
# list(
# src = file.path("www", "Reimagining_San_Francisco.png"),
# width = "50%",
# height = "45%",
# alt = "Reimagining San Francisco Logo"
# )
# }, deleteFile = FALSE)
# ------------------------------------------------
# Leaflet Base + Hide Overlays
# ------------------------------------------------
output$isoMap <- renderLeaflet({
pal_cbg <- colorNumeric("YlOrRd", cbg_vect_sf$medincE)
pal_rich <- colorNumeric("YlOrRd", domain = cbg_vect_sf$unique_species)
# Color palette for data availability
pal_data <- colorNumeric("Blues", domain = cbg_vect_sf$n_observations)
leaflet() %>%
addTiles(group = "Street Map (Default)") %>%
addProviderTiles(providers$Esri.WorldImagery, group = "Satellite (ESRI)") %>%
addProviderTiles(providers$CartoDB.Positron, group = "CartoDB.Positron") %>%
addPolygons(
data = cbg_vect_sf,
group = "Income",
fillColor = ~pal_cbg(medincE),
fillOpacity = 0.6,
color = "white",
weight = 1,
label=~GEOID,
highlightOptions = highlightOptions(
weight = 5,
color = "blue",
fillOpacity = 0.5,
bringToFront = TRUE
),
labelOptions = labelOptions(
style = list("font-weight" = "bold", "color" = "blue"),
textsize = "12px",
direction = "auto"
)
) %>%
addPolygons(
data = osm_greenspace,
group = "Greenspace",
fillColor = "darkgreen",
fillOpacity = 0.3,
color = "green",
weight = 1,
label = ~name,
highlightOptions = highlightOptions(
weight = 5,
color = "blue",
fillOpacity = 0.5,
bringToFront = TRUE
),
labelOptions = labelOptions(
style = list("font-weight" = "bold", "color" = "blue"),
textsize = "12px",
direction = "auto",
noHide = FALSE # Labels appear on hover
)
) %>%
addPolygons(
data = biodiv_hotspots,
group = "Hotspots (KnowBR)",
fillColor = "firebrick",
fillOpacity = 0.2,
color = "firebrick",
weight = 2,
label = ~GEOID,
highlightOptions = highlightOptions(
weight = 5,
color = "blue",
fillOpacity = 0.5,
bringToFront = TRUE
),
labelOptions = labelOptions(
style = list("font-weight" = "bold", "color" = "blue"),
textsize = "12px",
direction = "auto"
)
) %>%
addPolygons(
data = biodiv_coldspots,
group = "Coldspots (KnowBR)",
fillColor = "navyblue",
fillOpacity = 0.2,
color = "navyblue",
weight = 2,
label = ~GEOID,
highlightOptions = highlightOptions(
weight = 5,
color = "blue",
fillOpacity = 0.5,
bringToFront = TRUE
),
labelOptions = labelOptions(
style = list("font-weight" = "bold", "color" = "blue"),
textsize = "12px",
direction = "auto"
)
) %>%
# Add Species Richness Layer
addPolygons(
data = cbg_vect_sf,
group = "Species Richness",
fillColor = ~pal_rich(unique_species),
fillOpacity = 0.6,
color = "white",
weight = 1,
label = ~unique_species,
popup = ~paste0(
"<strong>GEOID: </strong>", GEOID,
"<br><strong>Species Richness: </strong>", unique_species,
"<br><strong>Observations: </strong>", n_observations,
"<br><strong>Median Income: </strong>", median_inc,
"<br><strong>Mean NDVI: </strong>", ndvi_mean
)
) %>%
# Add Data Availability Layer
addPolygons(
data = cbg_vect_sf,
group = "Data Availability",
fillColor = ~pal_data(n_observations),
fillOpacity = 0.6,
color = "white",
weight = 1,
label = ~n_observations,
popup = ~paste0(
"<strong>GEOID: </strong>", GEOID,
"<br><strong>Observations: </strong>", n_observations,
"<br><strong>Species Richness: </strong>", unique_species,
"<br><strong>Median Income: </strong>", median_inc,
"<br><strong>Mean NDVI: </strong>", ndvi_mean
)
) %>%
setView(lng = -122.4194, lat = 37.7749, zoom = 12) %>%
addLayersControl(
baseGroups = c("Street Map (Default)", "Satellite (ESRI)", "CartoDB.Positron"),
overlayGroups = c("Income", "Greenspace",
"Hotspots (KnowBR)", "Coldspots (KnowBR)",
"Species Richness", "Data Availability",
"Isochrones", "NDVI Raster"),
options = layersControlOptions(collapsed = FALSE)
) %>%
hideGroup("Income") %>%
hideGroup("Greenspace") %>%
hideGroup("Hotspots (KnowBR)") %>%
hideGroup("Coldspots (KnowBR)") %>%
hideGroup("Species Richness") %>%
hideGroup("Data Availability")
})
# ------------------------------------------------
# Observe map clicks (location_choice = 'map_click')
# ------------------------------------------------
observeEvent(input$isoMap_click, {
req(input$location_choice == "map_click")
click <- input$isoMap_click
if (!is.null(click)) {
chosen_point(c(lon = click$lng, lat = click$lat))
# Provide feedback with coordinates
showNotification(
paste0("Map clicked at Longitude: ", round(click$lng, 5),
", Latitude: ", round(click$lat, 5)),
type = "message"
)
# Update the map with a marker
leafletProxy("isoMap") %>%
clearMarkers() %>%
addCircleMarkers(
lng = click$lng, lat = click$lat,
radius = 6, color = "firebrick",
label = "Map Click Location"
)
}
})
# ------------------------------------------------
# Observe geocoder input
# ------------------------------------------------
observeEvent(input$geocoder, {
req(input$location_choice == "address")
geocode_result <- input$geocoder
if (!is.null(geocode_result)) {
# Extract coordinates
xy <- geocoder_as_xy(geocode_result)
# Update the chosen_point reactive value
chosen_point(c(lon = xy[1], lat = xy[2]))
# Provide feedback with the geocoded address and coordinates
showNotification(
paste0("Address geocoded to Longitude: ", round(xy[1], 5),
", Latitude: ", round(xy[2], 5)),
type = "message"
)
# Update the map with a marker
leafletProxy("isoMap") %>%
clearMarkers() %>%
addCircleMarkers(
lng = xy[1], lat = xy[2],
radius = 6, color = "navyblue",
label = "Geocoded Address"
) %>%
flyTo(lng = xy[1], lat = xy[2], zoom = 13)
}
})
# ------------------------------------------------
# Observe clearing of map
# ------------------------------------------------
observeEvent(input$clear_map, {
# Reset the chosen point
chosen_point(NULL)
# Clear all markers and isochrones from the map, but keep other layers
leafletProxy("isoMap") %>%
clearMarkers() %>%
clearGroup("Isochrones") %>%
clearGroup("NDVI Raster")
# Provide feedback to the user
showNotification("Map cleared. You can select a new location.", type = "message")
})
# ------------------------------------------------
# Generate Isochrones
# ------------------------------------------------
isochrones_data <- eventReactive(input$generate_iso, {
leafletProxy("isoMap") %>%
clearGroup("Isochrones") %>%
clearGroup("NDVI Raster")
# Validate inputs
pt <- chosen_point()
if (is.null(pt)) {
showNotification("No location selected! Provide an address or click the map.", type = "error")
return(NULL)
}
if (length(input$transport_modes) == 0) {
showNotification("Select at least one transportation mode.", type = "error")
return(NULL)
}
if (length(input$iso_times) == 0) {
showNotification("Select at least one isochrone time.", type = "error")
return(NULL)
}
location_sf <- st_as_sf(
data.frame(lon = pt["lon"], lat = pt["lat"]),
coords = c("lon","lat"), crs = 4326
)
iso_list <- list()
for (mode in input$transport_modes) {
for (t in input$iso_times) {
iso <- tryCatch({
mb_isochrone(location_sf, time = as.numeric(t), profile = mode,
access_token = mapbox_token)
}, error = function(e) {
showNotification(paste("Isochrone error:", mode, t, e$message), type = "error")
NULL
})
if (!is.null(iso)) {
iso$mode <- mode
iso$time <- t
iso_list <- append(iso_list, list(iso))
}
}
}
if (length(iso_list) == 0) {
showNotification("No isochrones generated.", type = "warning")
return(NULL)
}
all_iso <- do.call(rbind, iso_list) %>% st_transform(4326)
all_iso
})
# ------------------------------------------------
# Plot Isochrones + NDVI
# ------------------------------------------------
observeEvent(isochrones_data(), {
iso_data <- isochrones_data()
req(iso_data)
iso_data$iso_group <- paste(iso_data$mode, iso_data$time, sep = "_")
pal <- colorRampPalette(brewer.pal(8, "Set2"))
cols <- pal(nrow(iso_data))
for (i in seq_len(nrow(iso_data))) {
poly_i <- iso_data[i, ]
leafletProxy("isoMap") %>%
addPolygons(
data = poly_i,
group = "Isochrones",
color = cols[i],
weight = 2,
fillOpacity = 0.4,
label = paste0(poly_i$mode, " - ", poly_i$time, " mins")
)
}
iso_union <- st_union(iso_data)
iso_union_vect <- vect(iso_union)
ndvi_crop <- terra::crop(ndvi, iso_union_vect)
ndvi_mask <- terra::mask(ndvi_crop, iso_union_vect)
ndvi_vals <- values(ndvi_mask)
ndvi_vals <- ndvi_vals[!is.na(ndvi_vals)]
if (length(ndvi_vals) > 0) {
ndvi_pal <- colorNumeric("YlGn", domain = range(ndvi_vals, na.rm = TRUE), na.color = "transparent")
leafletProxy("isoMap") %>%
addRasterImage(
x = ndvi_mask,
colors = ndvi_pal,
opacity = 0.7,
project = TRUE,
group = "NDVI Raster"
) %>%
addLegend(
position = "bottomright",
pal = ndvi_pal,
values = ndvi_vals,
title = "NDVI"
)
}
# Ensure other layers remain
leafletProxy("isoMap") %>%
addLayersControl(
baseGroups = c("Street Map (Default)", "Satellite (ESRI)", "CartoDB.Positron"),
overlayGroups = c("Income", "Greenspace",
"Hotspots (KnowBR)", "Coldspots (KnowBR)",
"Species Richness", "Data Availability",
"Isochrones", "NDVI Raster"),
options = layersControlOptions(collapsed = FALSE)
)
})
# ------------------------------------------------
# socio_data Reactive + Summaries
# ------------------------------------------------
socio_data <- reactive({
iso_data <- isochrones_data()
if (is.null(iso_data) || nrow(iso_data) == 0) {
return(data.frame())
}
acs_wide <- cbg_vect_sf %>%
mutate(
population = popE,
med_income = medincE
)
hotspot_union <- st_union(biodiv_hotspots)
coldspot_union <- st_union(biodiv_coldspots)
results <- data.frame()
# Calculate distance to coldspot and hotspots
for (i in seq_len(nrow(iso_data))) {
poly_i <- iso_data[i, ]
dist_hot <- st_distance(poly_i, hotspot_union)
dist_cold <- st_distance(poly_i, coldspot_union)
dist_hot_km <- round(as.numeric(min(dist_hot)) / 1000, 3)
dist_cold_km <- round(as.numeric(min(dist_cold)) / 1000, 3)
inter_acs <- st_intersection(acs_wide, poly_i)
vect_acs_wide <- vect(acs_wide)
vect_poly_i <- vect(poly_i)
inter_acs <- intersect(vect_acs_wide, vect_poly_i)
inter_acs = st_as_sf(inter_acs)
pop_total <- 0
inc_str <- "N/A"
if (nrow(inter_acs) > 0) {
inter_acs$area <- st_area(inter_acs)
inter_acs$area_num <- as.numeric(inter_acs$area)
inter_acs$area_ratio <- inter_acs$area_num / as.numeric(st_area(inter_acs))
inter_acs$weighted_pop <- inter_acs$population * inter_acs$area_ratio
pop_total <- round(sum(inter_acs$weighted_pop, na.rm = TRUE))
w_income <- sum(inter_acs$med_income * inter_acs$area_num, na.rm = TRUE) /
sum(inter_acs$area_num, na.rm = TRUE)
if (!is.na(w_income) && w_income > 0) {
inc_str <- paste0("$", formatC(round(w_income, 2), format = "f", big.mark = ","))
}
}
# Intersection with greenspace
vec_osm_greenspace <- vect(osm_greenspace)
inter_gs <- intersect(vec_osm_greenspace, vect_poly_i)
inter_gs = st_as_sf(inter_gs)
gs_area_m2 <- 0
if (nrow(inter_gs) > 0) {
gs_area_m2 <- sum(st_area(inter_gs))
}
iso_area_m2 <- as.numeric(st_area(poly_i))
gs_area_m2 <- as.numeric(gs_area_m2)
gs_percent <- ifelse(iso_area_m2 > 0, 100 * gs_area_m2 / iso_area_m2, 0)
# NDVI Calculation
poly_vect <- vect(poly_i)
ndvi_crop <- terra::crop(ndvi, poly_vect)
ndvi_mask <- terra::mask(ndvi_crop, poly_vect)
ndvi_vals <- values(ndvi_mask)
ndvi_vals <- ndvi_vals[!is.na(ndvi_vals)]
mean_ndvi <- ifelse(length(ndvi_vals) > 0, round(mean(ndvi_vals, na.rm=TRUE), 3), NA)
# Intersection with GBIF data
inter_gbif <- intersect(vect_gbif, vect_poly_i)
inter_gbif <- st_as_sf(inter_gbif)
inter_gbif_acs <- sf_gbif %>%
mutate(
income = medincE,
ndvi = ndvi_sentinel
)
if (nrow(inter_gbif) > 0) {
inter_gbif_acs <- inter_gbif_acs[inter_gbif_acs$GEOID %in% inter_gbif$GEOID, ]
}
n_records <- nrow(inter_gbif)
n_species <- length(unique(inter_gbif$species))
n_birds <- length(unique(inter_gbif$species[inter_gbif$class == "Aves"]))
n_mammals <- length(unique(inter_gbif$species[inter_gbif$class == "Mammalia"]))
n_plants <- length(unique(inter_gbif$species[inter_gbif$class %in%
c("Magnoliopsida","Liliopsida","Pinopsida","Polypodiopsida",
"Equisetopsida","Bryopsida","Marchantiopsida") ]))
iso_area_km2 <- round(iso_area_m2 / 1e6, 3)
row_i <- data.frame(
Mode = tools::toTitleCase(poly_i$mode),
Time = poly_i$time,
IsochroneArea_km2 = iso_area_km2,
DistToHotspot_km = dist_hot_km,
DistToColdspot_km = dist_cold_km,
EstimatedPopulation = pop_total,
MedianIncome = inc_str,
MeanNDVI = ifelse(!is.na(mean_ndvi), mean_ndvi, "N/A"),
GBIF_Records = n_records,
GBIF_Species = n_species,
Bird_Species = n_birds,
Mammal_Species = n_mammals,
Plant_Species = n_plants,
Greenspace_m2 = round(gs_area_m2, 2),
Greenspace_percent = round(gs_percent, 2),
stringsAsFactors = FALSE
)
results <- rbind(results, row_i)
}
iso_union <- st_union(iso_data)
vect_iso <- vect(iso_union)
inter_all_gbif <- intersect(vect_gbif, vect_iso)
inter_all_gbif <- st_as_sf(inter_all_gbif)
union_n_species <- length(unique(inter_all_gbif$species))
rank_percentile <- round(100 * ecdf(cbg_vect_sf$unique_species)(union_n_species), 1)
attr(results, "bio_percentile") <- rank_percentile
# Closest Greenspace from ANY part of the isochrone
dist_mat <- st_distance(iso_union, osm_greenspace) # 1 x N matrix
if (length(dist_mat) > 0) {
min_dist <- min(dist_mat)
min_idx <- which.min(dist_mat)
gs_name <- osm_greenspace$name[min_idx]
attr(results, "closest_greenspace") <- gs_name
} else {
attr(results, "closest_greenspace") <- "None"
}
results
})
# ------------------------------------------------
# Render main summary table
# ------------------------------------------------
output$dataTable <- renderDT({
df <- socio_data()
if (nrow(df) == 0) {
return(DT::datatable(data.frame("Message" = "No isochrones generated yet.")))
}
DT::datatable(
df,
colnames = c(
"Mode" = "Mode",
"Time (min)" = "Time",
"Area (km²)" = "IsochroneArea_km2",
"Dist. Hotspot (km)" = "DistToHotspot_km",
"Dist. Coldspot (km)" = "DistToColdspot_km",
"Population" = "EstimatedPopulation",
"Median Income" = "MedianIncome",
"Mean NDVI" = "MeanNDVI",
"GBIF Records" = "GBIF_Records",
"Unique Species" = "GBIF_Species",
"Bird Species" = "Bird_Species",
"Mammal Species" = "Mammal_Species",
"Plant Species" = "Plant_Species",
# "Greenspace (m²)" = "Greenspace_m2",
"Greenspace (%)" = "Greenspace_percent"
),
options = list(pageLength = 10, autoWidth = TRUE),
rownames = FALSE
)
})
# ------------------------------------------------
# Biodiversity Access Score + Closest Greenspace
# ------------------------------------------------
output$bioScoreBox <- renderUI({
df <- socio_data()
if (nrow(df) == 0) return(NULL)
percentile <- attr(df, "bio_percentile")
if (is.null(percentile)) percentile <- "N/A"
else percentile <- paste0(percentile, "th Percentile")
wellPanel(
HTML(paste0("<h2>Biodiversity Access Score: ", percentile, "</h2>"))
)
})
output$closestGreenspaceUI <- renderUI({
df <- socio_data()
if (nrow(df) == 0) return(NULL)
gs_name <- attr(df, "closest_greenspace")
if (is.null(gs_name)) gs_name <- "None"
tagList(
strong("Closest Greenspace (from any part of the Isochrone):"),
p(gs_name)
)
})
# ------------------------------------------------
# Secondary table: user-selected CLASS & FAMILY
# ------------------------------------------------
output$classTable <- renderDT({
iso_data <- isochrones_data()
if (is.null(iso_data) || nrow(iso_data) == 0) {
return(DT::datatable(data.frame("Message" = "No isochrones generated yet.")))
}
iso_union <- st_union(iso_data)
vect_iso <- vect(iso_union)
inter_gbif <- intersect(vect_gbif, vect_iso)
inter_gbif = st_as_sf(inter_gbif)
inter_gbif_acs = sf_gbif %>%
mutate(
income = medincE,
ndvi = ndvi_sentinel
)
if (input$class_filter != "All") {
inter_gbif_acs <- inter_gbif_acs[ inter_gbif_acs$class == input$class_filter, ]
}
if (input$family_filter != "All") {
inter_gbif_acs <- inter_gbif_acs[ inter_gbif_acs$family == input$family_filter, ]
}
if (nrow(inter_gbif_acs) == 0) {
return(DT::datatable(data.frame("Message" = "No records for that combination in the isochrone.")))
}
species_counts <- inter_gbif_acs %>%
st_drop_geometry() %>%
group_by(species) %>%
summarize(
n_records = n(),
mean_income = round(mean(income, na.rm=TRUE), 2),
mean_ndvi = round(mean(ndvi, na.rm=TRUE), 3),
.groups = "drop"
) %>%
arrange(desc(n_records))
DT::datatable(
species_counts,
colnames = c("Species", "Number of Records", "Mean Income", "Mean NDVI"),
options = list(pageLength = 10),
rownames = FALSE
)
})
# ------------------------------------------------
# Ggplot: Biodiversity & Socioeconomic Summary
# ------------------------------------------------
output$bioSocPlot <- renderPlot({
df <- socio_data()
if (nrow(df) == 0) return(NULL)
df_plot <- df %>%
mutate(IsoLabel = paste0(Mode, "-", Time, "min"))
ggplot(df_plot, aes(x = IsoLabel)) +
geom_col(aes(y = GBIF_Species), fill = "steelblue", alpha = 0.7) +
geom_line(aes(y = EstimatedPopulation / 1000, group = 1), color = "red", size = 1) +
geom_point(aes(y = EstimatedPopulation / 1000), color = "red", size = 3) +
labs(
x = "Isochrone (Mode-Time)",
y = "Unique Species (Blue) | Population (Red) (Thousands)",
title = "Biodiversity & Socioeconomic Summary"
) +
theme_minimal(base_size = 14) +
theme(
axis.text.x = element_text(angle = 45, hjust = 1, size = 12),
axis.text.y = element_text(size = 12),
axis.title.x = element_text(size = 14),
axis.title.y = element_text(size = 14),
plot.title = element_text(hjust = 0.5, size = 16, face = "bold")
)
})
# ------------------------------------------------
# Bar plot: GBIF records by institutionCode
# ------------------------------------------------
output$collectionPlot <- renderPlot({
iso_data <- isochrones_data()
if (is.null(iso_data) || nrow(iso_data) == 0) {
plot.new()
title("No GBIF records found in this isochrone.")
return(NULL)
}
iso_union <- st_union(iso_data)
vect_iso <- vect(iso_union)
inter_gbif <- intersect(vect_gbif, vect_iso)
inter_gbif = st_as_sf(inter_gbif)
if (nrow(inter_gbif) == 0) {
plot.new()
title("No GBIF records found in this isochrone.")
return(NULL)
}
df_code <- inter_gbif %>%
st_drop_geometry() %>%
group_by(institutionCode) %>%
summarize(count = n(), .groups = "drop") %>%
arrange(desc(count)) %>%
mutate(truncatedCode = substr(institutionCode, 1, 5)) # Shorter version of the names
ggplot(df_code, aes(x = reorder(truncatedCode, -count), y = count)) +
geom_bar(stat = "identity", fill = "darkorange", alpha = 0.7) +
labs(
x = "Institution Code (Truncated)",
y = "Number of Records",
title = "GBIF Records by Institution Code (Isochrone Union)"
) +
theme_minimal(base_size = 14) +
theme(
axis.text.x = element_text(angle = 45, hjust = 1, size = 12),
axis.text.y = element_text(size = 12),
axis.title.x = element_text(size = 14),
axis.title.y = element_text(size = 14),
plot.title = element_text(hjust = 0.5, size = 16, face = "bold")
)
})
# ------------------------------------------------
# Additional Plot: n_observations vs n_species
# ------------------------------------------------
# Make it reactive: obsVsSpeciesPlot updates dynamically based on user-selected class_filter or family_filter.
filtered_data <- reactive({
data <- cbg_vect_sf
if (input$class_filter != "All") {
data <- data[data$class == input$class_filter, ]
}
if (input$family_filter != "All") {
data <- data[data$family == input$family_filter, ]
}
data
})
output$obsVsSpeciesPlot <- renderPlot({
data <- filtered_data()
if (nrow(data) == 0) {
plot.new()
title("No data available for selected filters.")
return(NULL)
}
ggplot(data, aes(x = log(n_observations + 1), y = log(unique_species + 1))) +
geom_point(color = "blue", alpha = 0.6) +
labs(
x = "Log(Number of Observations + 1)",
y = "Log(Species Richness + 1)",
title = "Data Availability vs. Species Richness"
) +
theme_minimal(base_size = 14) +
theme(
axis.text.x = element_text(size = 12),
axis.text.y = element_text(size = 12),
axis.title.x = element_text(size = 14),
axis.title.y = element_text(size = 14),
plot.title = element_text(hjust = 0.5, size = 16, face = "bold")
)
})
# ------------------------------------------------
# [Optional: Linear Model Plot (Commented Out)]
# ------------------------------------------------
# Uncomment and adjust if needed
# output$lmCoefficientsPlot <- renderPlot({
# df_lm <- cbg_vect_sf %>%
# filter(!is.na(n_observations),
# !is.na(unique_species),
# !is.na(median_inc),
# !is.na(ndvi_mean))
#
# if (nrow(df_lm) < 5) {
# plot.new()
# title("Not enough data for linear model.")
# return(NULL)
# }
#
# fit <- lm(unique_species ~ n_observations + median_inc + ndvi_mean, data = df_lm)
#
# p <- plot_model(fit, show.values = TRUE, value.offset = .3, title = "LM Coefficients: n_species ~ n_observations + median_inc + ndvi_mean")
# print(p)
# })
#
# # Add Images:
# df_img = data.frame(id = c(1:3), img_path=c('California_academy_logo.png', 'Reimagining_San_Francisco.png', 'UC Berkeley_logo.png'))
# n <- nrow(df_img)
#
# n <- nrow(df_img)
#
# observe({
# for (i in 1:n)
# {
# print(i)
# local({
# my_i <- i
# imagename = paste0("img", my_i)
# print(imagename)
# output[[imagename]] <-
# renderImage({
# list(src = file.path('www', df_img$img_path[my_i]),
# width = "100%", height = "55%",
# alt = "Image failed to render")
# }, deleteFile = FALSE)
# })
# }
# })
#
#
# output$houz <- renderUI({
#
# image_output_list <-
# lapply(1:n,
# function(i)
# {
# imagename = paste0("img", i)
# imageOutput(imagename)
# })
#
# do.call(tagList, image_output_list)
# })
}
# Run the Shiny app
shinyApp(ui, server)
#