|
from diffusers import ( |
|
StableDiffusionPipeline, |
|
StableDiffusionImg2ImgPipeline, |
|
DPMSolverMultistepScheduler, |
|
) |
|
import gradio as gr |
|
import torch |
|
from PIL import Image |
|
import time |
|
import psutil |
|
import random |
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker |
|
|
|
|
|
start_time = time.time() |
|
current_steps = 25 |
|
|
|
SAFETY_CHECKER = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker", torch_dtype=torch.float16) |
|
|
|
|
|
class Model: |
|
def __init__(self, name, path=""): |
|
self.name = name |
|
self.path = path |
|
|
|
if path != "": |
|
self.pipe_t2i = StableDiffusionPipeline.from_pretrained( |
|
path, torch_dtype=torch.float16, safety_checker=SAFETY_CHECKER |
|
) |
|
self.pipe_t2i.scheduler = DPMSolverMultistepScheduler.from_config( |
|
self.pipe_t2i.scheduler.config |
|
) |
|
self.pipe_i2i = StableDiffusionImg2ImgPipeline(**self.pipe_t2i.components) |
|
else: |
|
self.pipe_t2i = None |
|
self.pipe_i2i = None |
|
|
|
|
|
models = [ |
|
Model("Protogen v2.2 (Anime)", "darkstorm2150/Protogen_v2.2_Official_Release"), |
|
Model("Protogen x3.4 (Photorealism)", "darkstorm2150/Protogen_x3.4_Official_Release"), |
|
Model("Protogen x5.3 (Photorealism)", "darkstorm2150/Protogen_x5.3_Official_Release"), |
|
Model("Protogen x5.8 Rebuilt (Scifi+Anime)", "darkstorm2150/Protogen_x5.8_Official_Release"), |
|
Model("Protogen Dragon (RPG Model)", "darkstorm2150/Protogen_Dragon_Official_Release"), |
|
Model("Protogen Nova", "darkstorm2150/Protogen_Nova_Official_Release"), |
|
Model("Protogen Eclipse", "darkstorm2150/Protogen_Eclipse_Official_Release"), |
|
Model("Protogen Infinity", "darkstorm2150/Protogen_Infinity_Official_Release"), |
|
] |
|
|
|
MODELS = {m.name: m for m in models} |
|
|
|
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶" |
|
|
|
|
|
def error_str(error, title="Error"): |
|
return ( |
|
f"""#### {title} |
|
{error}""" |
|
if error |
|
else "" |
|
) |
|
|
|
|
|
def inference( |
|
model_name, |
|
prompt, |
|
guidance, |
|
steps, |
|
n_images=1, |
|
width=512, |
|
height=512, |
|
seed=0, |
|
img=None, |
|
strength=0.5, |
|
neg_prompt="", |
|
): |
|
|
|
print(psutil.virtual_memory()) |
|
|
|
if seed == 0: |
|
seed = random.randint(0, 2147483647) |
|
|
|
generator = torch.Generator("cuda").manual_seed(seed) |
|
|
|
try: |
|
if img is not None: |
|
return ( |
|
img_to_img( |
|
model_name, |
|
prompt, |
|
n_images, |
|
neg_prompt, |
|
img, |
|
strength, |
|
guidance, |
|
steps, |
|
width, |
|
height, |
|
generator, |
|
seed, |
|
), |
|
f"Done. Seed: {seed}", |
|
) |
|
else: |
|
return ( |
|
txt_to_img( |
|
model_name, |
|
prompt, |
|
n_images, |
|
neg_prompt, |
|
guidance, |
|
steps, |
|
width, |
|
height, |
|
generator, |
|
seed, |
|
), |
|
f"Done. Seed: {seed}", |
|
) |
|
except Exception as e: |
|
return None, error_str(e) |
|
|
|
|
|
def txt_to_img( |
|
model_name, |
|
prompt, |
|
n_images, |
|
neg_prompt, |
|
guidance, |
|
steps, |
|
width, |
|
height, |
|
generator, |
|
seed, |
|
): |
|
pipe = MODELS[model_name].pipe_t2i |
|
|
|
if torch.cuda.is_available(): |
|
pipe = pipe.to("cuda") |
|
pipe.enable_xformers_memory_efficient_attention() |
|
|
|
result = pipe( |
|
prompt, |
|
negative_prompt=neg_prompt, |
|
num_images_per_prompt=n_images, |
|
num_inference_steps=int(steps), |
|
guidance_scale=guidance, |
|
width=width, |
|
height=height, |
|
generator=generator, |
|
) |
|
|
|
pipe.to("cpu") |
|
|
|
return replace_nsfw_images(result) |
|
|
|
|
|
def img_to_img( |
|
model_name, |
|
prompt, |
|
n_images, |
|
neg_prompt, |
|
img, |
|
strength, |
|
guidance, |
|
steps, |
|
width, |
|
height, |
|
generator, |
|
seed, |
|
): |
|
pipe = MODELS[model_name].pipe_i2i |
|
|
|
if torch.cuda.is_available(): |
|
pipe = pipe.to("cuda") |
|
pipe.enable_xformers_memory_efficient_attention() |
|
|
|
ratio = min(height / img.height, width / img.width) |
|
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS) |
|
|
|
result = pipe( |
|
prompt, |
|
negative_prompt=neg_prompt, |
|
num_images_per_prompt=n_images, |
|
image=img, |
|
num_inference_steps=int(steps), |
|
strength=strength, |
|
guidance_scale=guidance, |
|
generator=generator, |
|
) |
|
|
|
pipe.to("cpu") |
|
|
|
return replace_nsfw_images(result) |
|
|
|
|
|
def replace_nsfw_images(results): |
|
for i in range(len(results.images)): |
|
if results.nsfw_content_detected[i]: |
|
results.images[i] = Image.open("nsfw.png") |
|
return results.images |
|
|
|
|
|
with gr.Blocks(css="style.css") as demo: |
|
with gr.Row(): |
|
|
|
with gr.Column(scale=55): |
|
with gr.Group(): |
|
prompt = gr.Textbox( |
|
label="Repo id on Hub", |
|
placeholder="Path to model, e.g. CompVis/stable-diffusion-v1-4", |
|
) |
|
with gr.Box(visible=False) as custom_model_group: |
|
custom_model_path = gr.Textbox( |
|
label="Custom model path", |
|
placeholder="Path to model, e.g. darkstorm2150/Protogen_x3.4_Official_Release", |
|
interactive=True, |
|
) |
|
gr.HTML( |
|
"<div><font size='2'>Custom models have to be downloaded first, so give it some time.</font></div>" |
|
) |
|
|
|
with gr.Row(): |
|
prompt = gr.Textbox( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=2, |
|
placeholder="Enter prompt.", |
|
).style(container=False) |
|
generate = gr.Button(value="Generate").style( |
|
rounded=(False, True, True, False) |
|
) |
|
|
|
|
|
gallery = gr.Gallery( |
|
label="Generated images", show_label=False, elem_id="gallery" |
|
).style(grid=[2], height="auto") |
|
|
|
state_info = gr.Textbox(label="State", show_label=False, max_lines=2).style( |
|
container=False |
|
) |
|
error_output = gr.Markdown() |
|
|
|
with gr.Column(scale=45): |
|
with gr.Tab("Options"): |
|
with gr.Group(): |
|
neg_prompt = gr.Textbox( |
|
label="Negative prompt", |
|
placeholder="What to exclude from the image", |
|
) |
|
|
|
n_images = gr.Slider( |
|
label="Images", value=1, minimum=1, maximum=4, step=1 |
|
) |
|
|
|
with gr.Row(): |
|
guidance = gr.Slider( |
|
label="Guidance scale", value=7.5, maximum=15 |
|
) |
|
steps = gr.Slider( |
|
label="Steps", |
|
value=current_steps, |
|
minimum=2, |
|
maximum=75, |
|
step=1, |
|
) |
|
|
|
with gr.Row(): |
|
width = gr.Slider( |
|
label="Width", value=512, minimum=64, maximum=1024, step=8 |
|
) |
|
height = gr.Slider( |
|
label="Height", value=512, minimum=64, maximum=1024, step=8 |
|
) |
|
|
|
seed = gr.Slider( |
|
0, 2147483647, label="Seed (0 = random)", value=0, step=1 |
|
) |
|
|
|
with gr.Tab("Image to image"): |
|
with gr.Group(): |
|
image = gr.Image( |
|
label="Image", height=256, tool="editor", type="pil" |
|
) |
|
strength = gr.Slider( |
|
label="Transformation strength", |
|
minimum=0, |
|
maximum=1, |
|
step=0.01, |
|
value=0.5, |
|
) |
|
|
|
inputs = [ |
|
model_name, |
|
prompt, |
|
guidance, |
|
steps, |
|
n_images, |
|
width, |
|
height, |
|
seed, |
|
image, |
|
strength, |
|
neg_prompt, |
|
] |
|
outputs = [gallery, error_output] |
|
prompt.submit(inference, inputs=inputs, outputs=outputs) |
|
generate.click(inference, inputs=inputs, outputs=outputs) |
|
|
|
gr.HTML( |
|
""" |
|
<div style="border-top: 1px solid #303030;"> |
|
<br> |
|
<p>Models by <a href="https://huggingface.co/darkstorm2150">@darkstorm2150</a> and others. ❤️</p> |
|
<p>This space uses the <a href="https://github.com/LuChengTHU/dpm-solver">DPM-Solver++</a> sampler by <a href="https://arxiv.org/abs/2206.00927">Cheng Lu, et al.</a>.</p> |
|
<p>Space by: Darkstorm (Victor Espinoza)<br> |
|
<a href="https://www.instagram.com/officialvictorespinoza/">Instagram</a> |
|
</div> |
|
""" |
|
) |
|
|
|
print(f"Space built in {time.time() - start_time:.2f} seconds") |
|
|
|
demo.queue(concurrency_count=1) |
|
demo.launch() |
|
|