Commit
·
dfaea05
1
Parent(s):
d44229e
up
Browse files
app.py
CHANGED
@@ -1,53 +1,11 @@
|
|
1 |
-
from diffusers import
|
2 |
-
StableDiffusionPipeline,
|
3 |
-
StableDiffusionImg2ImgPipeline,
|
4 |
-
DPMSolverMultistepScheduler,
|
5 |
-
)
|
6 |
import gradio as gr
|
7 |
import torch
|
8 |
-
from PIL import Image
|
9 |
import time
|
10 |
import psutil
|
11 |
-
import random
|
12 |
-
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
13 |
|
14 |
|
15 |
start_time = time.time()
|
16 |
-
current_steps = 25
|
17 |
-
|
18 |
-
SAFETY_CHECKER = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker", torch_dtype=torch.float16)
|
19 |
-
|
20 |
-
|
21 |
-
class Model:
|
22 |
-
def __init__(self, name, path=""):
|
23 |
-
self.name = name
|
24 |
-
self.path = path
|
25 |
-
|
26 |
-
if path != "":
|
27 |
-
self.pipe_t2i = StableDiffusionPipeline.from_pretrained(
|
28 |
-
path, torch_dtype=torch.float16, safety_checker=SAFETY_CHECKER
|
29 |
-
)
|
30 |
-
self.pipe_t2i.scheduler = DPMSolverMultistepScheduler.from_config(
|
31 |
-
self.pipe_t2i.scheduler.config
|
32 |
-
)
|
33 |
-
self.pipe_i2i = StableDiffusionImg2ImgPipeline(**self.pipe_t2i.components)
|
34 |
-
else:
|
35 |
-
self.pipe_t2i = None
|
36 |
-
self.pipe_i2i = None
|
37 |
-
|
38 |
-
|
39 |
-
models = [
|
40 |
-
Model("Protogen v2.2 (Anime)", "darkstorm2150/Protogen_v2.2_Official_Release"),
|
41 |
-
Model("Protogen x3.4 (Photorealism)", "darkstorm2150/Protogen_x3.4_Official_Release"),
|
42 |
-
Model("Protogen x5.3 (Photorealism)", "darkstorm2150/Protogen_x5.3_Official_Release"),
|
43 |
-
Model("Protogen x5.8 Rebuilt (Scifi+Anime)", "darkstorm2150/Protogen_x5.8_Official_Release"),
|
44 |
-
Model("Protogen Dragon (RPG Model)", "darkstorm2150/Protogen_Dragon_Official_Release"),
|
45 |
-
Model("Protogen Nova", "darkstorm2150/Protogen_Nova_Official_Release"),
|
46 |
-
Model("Protogen Eclipse", "darkstorm2150/Protogen_Eclipse_Official_Release"),
|
47 |
-
Model("Protogen Infinity", "darkstorm2150/Protogen_Infinity_Official_Release"),
|
48 |
-
]
|
49 |
-
|
50 |
-
MODELS = {m.name: m for m in models}
|
51 |
|
52 |
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
|
53 |
|
@@ -62,263 +20,80 @@ def error_str(error, title="Error"):
|
|
62 |
|
63 |
|
64 |
def inference(
|
65 |
-
|
|
|
66 |
prompt,
|
67 |
-
guidance,
|
68 |
-
steps,
|
69 |
-
n_images=1,
|
70 |
-
width=512,
|
71 |
-
height=512,
|
72 |
-
seed=0,
|
73 |
-
img=None,
|
74 |
-
strength=0.5,
|
75 |
-
neg_prompt="",
|
76 |
):
|
77 |
|
78 |
print(psutil.virtual_memory()) # print memory usage
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
generator = torch.Generator("cuda").manual_seed(seed)
|
84 |
-
|
85 |
-
try:
|
86 |
-
if img is not None:
|
87 |
-
return (
|
88 |
-
img_to_img(
|
89 |
-
model_name,
|
90 |
-
prompt,
|
91 |
-
n_images,
|
92 |
-
neg_prompt,
|
93 |
-
img,
|
94 |
-
strength,
|
95 |
-
guidance,
|
96 |
-
steps,
|
97 |
-
width,
|
98 |
-
height,
|
99 |
-
generator,
|
100 |
-
seed,
|
101 |
-
),
|
102 |
-
f"Done. Seed: {seed}",
|
103 |
-
)
|
104 |
-
else:
|
105 |
-
return (
|
106 |
-
txt_to_img(
|
107 |
-
model_name,
|
108 |
-
prompt,
|
109 |
-
n_images,
|
110 |
-
neg_prompt,
|
111 |
-
guidance,
|
112 |
-
steps,
|
113 |
-
width,
|
114 |
-
height,
|
115 |
-
generator,
|
116 |
-
seed,
|
117 |
-
),
|
118 |
-
f"Done. Seed: {seed}",
|
119 |
-
)
|
120 |
-
except Exception as e:
|
121 |
-
return None, error_str(e)
|
122 |
-
|
123 |
-
|
124 |
-
def txt_to_img(
|
125 |
-
model_name,
|
126 |
-
prompt,
|
127 |
-
n_images,
|
128 |
-
neg_prompt,
|
129 |
-
guidance,
|
130 |
-
steps,
|
131 |
-
width,
|
132 |
-
height,
|
133 |
-
generator,
|
134 |
-
seed,
|
135 |
-
):
|
136 |
-
pipe = MODELS[model_name].pipe_t2i
|
137 |
-
|
138 |
-
if torch.cuda.is_available():
|
139 |
-
pipe = pipe.to("cuda")
|
140 |
-
pipe.enable_xformers_memory_efficient_attention()
|
141 |
-
|
142 |
-
result = pipe(
|
143 |
-
prompt,
|
144 |
-
negative_prompt=neg_prompt,
|
145 |
-
num_images_per_prompt=n_images,
|
146 |
-
num_inference_steps=int(steps),
|
147 |
-
guidance_scale=guidance,
|
148 |
-
width=width,
|
149 |
-
height=height,
|
150 |
-
generator=generator,
|
151 |
-
)
|
152 |
-
|
153 |
-
pipe.to("cpu")
|
154 |
-
|
155 |
-
return replace_nsfw_images(result)
|
156 |
-
|
157 |
-
|
158 |
-
def img_to_img(
|
159 |
-
model_name,
|
160 |
-
prompt,
|
161 |
-
n_images,
|
162 |
-
neg_prompt,
|
163 |
-
img,
|
164 |
-
strength,
|
165 |
-
guidance,
|
166 |
-
steps,
|
167 |
-
width,
|
168 |
-
height,
|
169 |
-
generator,
|
170 |
-
seed,
|
171 |
-
):
|
172 |
-
pipe = MODELS[model_name].pipe_i2i
|
173 |
-
|
174 |
-
if torch.cuda.is_available():
|
175 |
-
pipe = pipe.to("cuda")
|
176 |
-
pipe.enable_xformers_memory_efficient_attention()
|
177 |
|
178 |
-
|
179 |
-
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
|
180 |
|
181 |
-
|
182 |
-
prompt,
|
183 |
-
negative_prompt=neg_prompt,
|
184 |
-
num_images_per_prompt=n_images,
|
185 |
-
image=img,
|
186 |
-
num_inference_steps=int(steps),
|
187 |
-
strength=strength,
|
188 |
-
guidance_scale=guidance,
|
189 |
-
generator=generator,
|
190 |
-
)
|
191 |
-
|
192 |
-
pipe.to("cpu")
|
193 |
-
|
194 |
-
return replace_nsfw_images(result)
|
195 |
|
|
|
|
|
|
|
196 |
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
|
203 |
|
204 |
with gr.Blocks(css="style.css") as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
with gr.Row():
|
206 |
|
207 |
with gr.Column(scale=55):
|
208 |
with gr.Group():
|
209 |
-
|
210 |
label="Repo id on Hub",
|
211 |
placeholder="Path to model, e.g. CompVis/stable-diffusion-v1-4",
|
212 |
)
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
with gr.Row():
|
224 |
-
prompt = gr.Textbox(
|
225 |
-
label="Prompt",
|
226 |
-
show_label=False,
|
227 |
-
max_lines=2,
|
228 |
-
placeholder="Enter prompt.",
|
229 |
-
).style(container=False)
|
230 |
-
generate = gr.Button(value="Generate").style(
|
231 |
-
rounded=(False, True, True, False)
|
232 |
-
)
|
233 |
-
|
234 |
-
# image_out = gr.Image(height=512)
|
235 |
gallery = gr.Gallery(
|
236 |
label="Generated images", show_label=False, elem_id="gallery"
|
237 |
).style(grid=[2], height="auto")
|
238 |
|
239 |
-
state_info = gr.Textbox(label="State", show_label=False, max_lines=2).style(
|
240 |
-
container=False
|
241 |
-
)
|
242 |
error_output = gr.Markdown()
|
243 |
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
neg_prompt = gr.Textbox(
|
248 |
-
label="Negative prompt",
|
249 |
-
placeholder="What to exclude from the image",
|
250 |
-
)
|
251 |
-
|
252 |
-
n_images = gr.Slider(
|
253 |
-
label="Images", value=1, minimum=1, maximum=4, step=1
|
254 |
-
)
|
255 |
-
|
256 |
-
with gr.Row():
|
257 |
-
guidance = gr.Slider(
|
258 |
-
label="Guidance scale", value=7.5, maximum=15
|
259 |
-
)
|
260 |
-
steps = gr.Slider(
|
261 |
-
label="Steps",
|
262 |
-
value=current_steps,
|
263 |
-
minimum=2,
|
264 |
-
maximum=75,
|
265 |
-
step=1,
|
266 |
-
)
|
267 |
-
|
268 |
-
with gr.Row():
|
269 |
-
width = gr.Slider(
|
270 |
-
label="Width", value=512, minimum=64, maximum=1024, step=8
|
271 |
-
)
|
272 |
-
height = gr.Slider(
|
273 |
-
label="Height", value=512, minimum=64, maximum=1024, step=8
|
274 |
-
)
|
275 |
-
|
276 |
-
seed = gr.Slider(
|
277 |
-
0, 2147483647, label="Seed (0 = random)", value=0, step=1
|
278 |
-
)
|
279 |
-
|
280 |
-
with gr.Tab("Image to image"):
|
281 |
-
with gr.Group():
|
282 |
-
image = gr.Image(
|
283 |
-
label="Image", height=256, tool="editor", type="pil"
|
284 |
-
)
|
285 |
-
strength = gr.Slider(
|
286 |
-
label="Transformation strength",
|
287 |
-
minimum=0,
|
288 |
-
maximum=1,
|
289 |
-
step=0.01,
|
290 |
-
value=0.5,
|
291 |
-
)
|
292 |
|
293 |
inputs = [
|
294 |
-
|
|
|
295 |
prompt,
|
296 |
-
guidance,
|
297 |
-
steps,
|
298 |
-
n_images,
|
299 |
-
width,
|
300 |
-
height,
|
301 |
-
seed,
|
302 |
-
image,
|
303 |
-
strength,
|
304 |
-
neg_prompt,
|
305 |
]
|
306 |
outputs = [gallery, error_output]
|
307 |
prompt.submit(inference, inputs=inputs, outputs=outputs)
|
308 |
generate.click(inference, inputs=inputs, outputs=outputs)
|
309 |
|
310 |
-
gr.HTML(
|
311 |
-
"""
|
312 |
-
<div style="border-top: 1px solid #303030;">
|
313 |
-
<br>
|
314 |
-
<p>Models by <a href="https://huggingface.co/darkstorm2150">@darkstorm2150</a> and others. ❤️</p>
|
315 |
-
<p>This space uses the <a href="https://github.com/LuChengTHU/dpm-solver">DPM-Solver++</a> sampler by <a href="https://arxiv.org/abs/2206.00927">Cheng Lu, et al.</a>.</p>
|
316 |
-
<p>Space by: Darkstorm (Victor Espinoza)<br>
|
317 |
-
<a href="https://www.instagram.com/officialvictorespinoza/">Instagram</a>
|
318 |
-
</div>
|
319 |
-
"""
|
320 |
-
)
|
321 |
-
|
322 |
print(f"Space built in {time.time() - start_time:.2f} seconds")
|
323 |
|
324 |
demo.queue(concurrency_count=1)
|
|
|
1 |
+
from diffusers import DiffusionPipeline
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
import torch
|
|
|
4 |
import time
|
5 |
import psutil
|
|
|
|
|
6 |
|
7 |
|
8 |
start_time = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
|
11 |
|
|
|
20 |
|
21 |
|
22 |
def inference(
|
23 |
+
repo_id,
|
24 |
+
pr,
|
25 |
prompt,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
):
|
27 |
|
28 |
print(psutil.virtual_memory()) # print memory usage
|
29 |
|
30 |
+
seed = 0
|
31 |
+
torch_device = "cuda" if "GPU" in device else "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
generator = torch.Generator(torch_device).manual_seed(seed)
|
|
|
34 |
|
35 |
+
dtype = torch.float16 if torch_device == "cuda" else torch.float32
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
try:
|
38 |
+
pipe = DiffusionPipeline.from_pretrained(repo_id, revision=pr, torch_dtype=dtype)
|
39 |
+
pipe.to(torch_device)
|
40 |
|
41 |
+
return pipe(prompt, generator=generator, num_inference_steps=25).images
|
42 |
+
except Exception as e:
|
43 |
+
url = f"https://huggingface.co/{repo_id}/discussions/{pr.split('/')[-1]}"
|
44 |
+
message = f"There is a problem with your diffusers weights of the PR: {url}. Error message: \n"
|
45 |
+
return None, error_str(message + e)
|
46 |
|
47 |
|
48 |
with gr.Blocks(css="style.css") as demo:
|
49 |
+
gr.HTML(
|
50 |
+
f"""
|
51 |
+
<div class="diffusion">
|
52 |
+
<p>
|
53 |
+
Space to test whether `diffusers` PRs work.
|
54 |
+
</p>
|
55 |
+
<p>
|
56 |
+
Running on <b>{device}</b>
|
57 |
+
</p>
|
58 |
+
</div>
|
59 |
+
"""
|
60 |
+
)
|
61 |
with gr.Row():
|
62 |
|
63 |
with gr.Column(scale=55):
|
64 |
with gr.Group():
|
65 |
+
repo_id = gr.Textbox(
|
66 |
label="Repo id on Hub",
|
67 |
placeholder="Path to model, e.g. CompVis/stable-diffusion-v1-4",
|
68 |
)
|
69 |
+
pr = gr.Textbox(
|
70 |
+
label="PR branch",
|
71 |
+
placeholder="PR branch that should be checked, e.g. refs/pr/171",
|
72 |
+
)
|
73 |
+
prompt = gr.Textbox(
|
74 |
+
label="Prompt",
|
75 |
+
default="An astronaut riding a horse on Mars.",
|
76 |
+
placeholder="Enter prompt.",
|
77 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
gallery = gr.Gallery(
|
79 |
label="Generated images", show_label=False, elem_id="gallery"
|
80 |
).style(grid=[2], height="auto")
|
81 |
|
|
|
|
|
|
|
82 |
error_output = gr.Markdown()
|
83 |
|
84 |
+
generate = gr.Button(value="Generate").style(
|
85 |
+
rounded=(False, True, True, False)
|
86 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
inputs = [
|
89 |
+
repo_id,
|
90 |
+
pr,
|
91 |
prompt,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
]
|
93 |
outputs = [gallery, error_output]
|
94 |
prompt.submit(inference, inputs=inputs, outputs=outputs)
|
95 |
generate.click(inference, inputs=inputs, outputs=outputs)
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
print(f"Space built in {time.time() - start_time:.2f} seconds")
|
98 |
|
99 |
demo.queue(concurrency_count=1)
|