File size: 4,423 Bytes
601c9fd
4b23311
601c9fd
4b23311
 
 
 
 
 
601c9fd
 
 
 
 
 
 
4b23311
 
 
 
 
 
 
 
 
 
601c9fd
4b23311
bf03ba4
601c9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b23311
 
601c9fd
4b23311
601c9fd
 
4b23311
 
 
 
 
 
 
601c9fd
 
 
4b23311
601c9fd
 
 
4b23311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
601c9fd
4b23311
 
 
601c9fd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
from huggingface_hub import model_info, hf_hub_download
import gradio as gr
import json


def bytes_to_giga_bytes(bytes):
    return f"{(bytes / 1024 / 1024 / 1024):.3f}"


def load_model_index(pipeline_id, token=None, revision=None):
    index_path = hf_hub_download(repo_id=pipeline_id, filename="model_index.json", revision=revision, token=token)
    with open(index_path, "r") as f:
        index_dict = json.load(f)
    return index_dict


def get_component_wise_memory(pipeline_id, token=None, variant=None, revision=None, extension=".safetensors"):
    if token == "":
        token = None

    if revision == "":
        revision = None

    if variant == "fp32":
        variant = None

    print(f"pipeline_id: {pipeline_id}, variant: {variant}, revision: {revision}, extension: {extension}")

    files_in_repo = model_info(pipeline_id, revision=revision, token=token, files_metadata=True).siblings
    index_dict = load_model_index(pipeline_id, token=token, revision=revision)

    is_text_encoder_shared = any(".index.json" in file_obj.rfilename for file_obj in files_in_repo)
    component_wise_memory = {}

    # Handle text encoder separately when it's sharded.
    if is_text_encoder_shared:
        for current_file in files_in_repo:
            if "text_encoder" in current_file.rfilename:
                if not current_file.rfilename.endswith(".json") and current_file.rfilename.endswith(extension):
                    if variant is not None and variant in current_file.rfilename:
                        selected_file = current_file
                    else:
                        selected_file = current_file
                    if "text_encoder" not in component_wise_memory:
                        component_wise_memory["text_encoder"] = selected_file.size
                    else:
                        component_wise_memory["text_encoder"] += selected_file.size

    print(component_wise_memory)

    # Handle pipeline components.
    component_filter = ["scheduler", "feature_extractor", "safety_checker", "tokenizer"]
    if is_text_encoder_shared:
        component_filter.append("text_encoder")

    for current_file in files_in_repo:
        if all(substring not in current_file.rfilename for substring in component_filter):
            is_folder = len(current_file.rfilename.split("/")) == 2
            if is_folder and current_file.rfilename.split("/")[0] in index_dict:
                selected_file = None
                if not current_file.rfilename.endswith(".json") and current_file.rfilename.endswith(extension):
                    component = current_file.rfilename.split("/")[0]
                    if (
                        variant is not None
                        and variant in current_file.rfilename
                        and "ema" not in current_file.rfilename
                    ):
                        selected_file = current_file
                    elif variant is None and "ema" not in current_file.rfilename:
                        selected_file = current_file

                    if selected_file is not None:
                        print(selected_file.rfilename)
                        component_wise_memory[component] = bytes_to_giga_bytes(selected_file.size)

    return component_wise_memory


gr.Interface(
    title="Compute component-wise memory of a 🧨 Diffusers pipeline.",
    description="Sizes will be reported in GB.",
    fn=get_component_wise_memory,
    inputs=[
        gr.components.Textbox(lines=1, label="pipeline_id", info="Example: runwayml/stable-diffusion-v1-5"),
        gr.components.Textbox(lines=1, label="hf_token", info="Pass this in case of private repositories."),
        gr.components.Dropdown(
            [
                "fp32",
                "fp16",
            ],
            label="variant",
            info="Precision to use for calculation.",
        ),
        gr.components.Textbox(lines=1, label="revision", info="Repository revision to use."),
        gr.components.Dropdown(
            [".bin", ".safetensors"],
            label="extension",
            info="Extension to use.",
        ),
    ],
    outputs="text",
    examples=[
        ["runwayml/stable-diffusion-v1-5", None, "fp32", None, ".safetensors"],
        ["stabilityai/stable-diffusion-xl-base-1.0", None, "fp16", None, ".safetensors"],
        [""],
    ],
    theme=gr.themes.Soft(),
    allow_flagging=False,
).launch()