File size: 8,549 Bytes
d8ca2a9
 
 
 
 
 
ae3b68e
03cbfd8
d8ca2a9
3997fa3
d8ca2a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae3b68e
0b5e97e
d8ca2a9
 
 
 
 
 
 
 
 
 
 
 
ae3b68e
 
 
 
 
 
 
 
 
26cd1e9
 
 
ae3b68e
d8ca2a9
 
cbabf63
 
 
 
 
 
 
 
 
 
 
d8ca2a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b5e97e
ae3b68e
d8ca2a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae3b68e
d8ca2a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
import subprocess
from huggingface_hub import HfApi, upload_folder
import gradio as gr
import hf_utils
import utils
from safetensors import safe_open
import torch

subprocess.run(["git", "clone", "https://github.com/huggingface/diffusers", "diffs"])

def error_str(error, title="Error"):
    return f"""#### {title}
            {error}"""  if error else ""

def on_token_change(token):
    model_names, error = hf_utils.get_my_model_names(token)
    if model_names:
        model_names.append("Other")

    return gr.update(visible=bool(model_names)), gr.update(choices=model_names, value=model_names[0] if model_names else None), gr.update(visible=bool(model_names)), gr.update(value=error_str(error))

def url_to_model_id(model_id_str):
    return model_id_str.split("/")[-2] + "/" + model_id_str.split("/")[-1] if model_id_str.startswith("https://huggingface.co/") else model_id_str
    
def get_ckpt_names(token, radio_model_names, input_model):
    
    model_id = url_to_model_id(input_model) if radio_model_names == "Other" else radio_model_names

    if token == "" or model_id == "":
        return error_str("Please enter both a token and a model name.", title="Invalid input"), gr.update(choices=[]), gr.update(visible=False)

    try:
        api = HfApi(token=token)
        ckpt_files = [f for f in api.list_repo_files(repo_id=model_id) if f.endswith(".ckpt")]
        
        if not ckpt_files:
            return error_str("No checkpoint files found in the model repo."), gr.update(choices=[]), gr.update(visible=False)
        
        return None, gr.update(choices=ckpt_files, value=ckpt_files[0], visible=True), gr.update(visible=True)
        
    except Exception as e:
        return error_str(e), gr.update(choices=[]), None

def convert_and_push(radio_model_names, input_model, ckpt_name, sd_version, token, path_in_repo, ema, safetensors):
    extract_ema = ema == "ema"
    
    if sd_version == None:
        return error_str("You must select a stable diffusion version.", title="Invalid input")

    model_id = url_to_model_id(input_model) if radio_model_names == "Other" else radio_model_names

    try:
        model_id = url_to_model_id(model_id)

        # 1. Download the checkpoint file
        ckpt_path, revision = hf_utils.download_file(repo_id=model_id, filename=ckpt_name, token=token)

        if safetensors == "yes":
            tensors = {}
            with safe_open(ckpt_path, framework="pt", device="cpu") as f:
               for key in f.keys():
                   tensors[key] = f.get_tensor(key)

            new_checkpoint_path = "/".join(ckpt_path.split("/")[:-1] + ["model_safe.ckpt"])
            torch.save(tensors, new_checkpoint_path)
            ckpt_path = new_checkpoint_path
            print("Converting ckpt_path", ckpt_path)

        print(ckpt_path)

        # 2. Run the conversion script
        os.makedirs(model_id, exist_ok=True)
        run_command = [
            "python3",
            "./diffs/scripts/convert_original_stable_diffusion_to_diffusers.py",
            "--checkpoint_path",
            ckpt_path,
            "--dump_path" ,
            model_id,
        ]
        if extract_ema:
            run_command.append("--extract_ema")
        subprocess.run(run_command)

        # 3. Push to the model repo
        commit_message="Add Diffusers weights"
        upload_folder(
            folder_path=model_id,
            repo_id=model_id,
            path_in_repo=path_in_repo,
            token=token,
            create_pr=True,
            commit_message=commit_message,
            commit_description=f"Add Diffusers weights converted from checkpoint `{ckpt_name}` in revision {revision}",
        )

        # # 4. Delete the downloaded checkpoint file, yaml files, and the converted model folder
        hf_utils.delete_file(revision)
        subprocess.run(["rm", "-rf", model_id.split('/')[0]])
        import glob
        for f in glob.glob("*.yaml*"):
            subprocess.run(["rm", "-rf", f])

        return f"""Successfully converted the checkpoint and opened a PR to add the weights to the model repo.
                You can view and merge the PR [here]({hf_utils.get_pr_url(HfApi(token=token), model_id, commit_message)})."""

        return "Done"
    
    except Exception as e:
        return error_str(e)


DESCRIPTION = """### Convert a stable diffusion checkpoint to Diffusers🧨
                With this space, you can easily convert a CompVis stable diffusion checkpoint to Diffusers and automatically create a pull request to the model repo.
                You can choose to convert a checkpoint from one of your own models, or from any other model on the Hub.
                You can skip the queue by running the app in the colab: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/qunash/f0f3152c5851c0c477b68b7b98d547fe/convert-sd-to-diffusers.ipynb)"""

with gr.Blocks() as demo:

    gr.Markdown(DESCRIPTION)
    with gr.Row():

        with gr.Column(scale=11):
            with gr.Column():
                gr.Markdown("## 1. Load model info")
                input_token = gr.Textbox(
                    max_lines=1,
                    type="password",
                    label="Enter your Hugging Face token",
                    placeholder="READ permission is sufficient"
                )
                gr.Markdown("You can get a token [here](https://huggingface.co/settings/tokens)")
                with gr.Group(visible=False) as group_model:
                    radio_model_names = gr.Radio(label="Choose a model")
                    input_model = gr.Textbox(
                        max_lines=1,
                        label="Model name or URL",
                        placeholder="username/model_name",
                        visible=False,
                    )

            btn_get_ckpts = gr.Button("Load", visible=False)

        with gr.Column(scale=10):
            with gr.Column(visible=False) as group_convert:
                gr.Markdown("## 2. Convert to Diffusers🧨")
                radio_ckpts = gr.Radio(label="Choose the checkpoint to convert", visible=False)
                path_in_repo = gr.Textbox(label="Path where the weights will be saved", placeholder="Leave empty for root folder")
                ema = gr.Radio(label="Extract EMA or non-EMA?", choices=["ema", "non-ema"])
                safetensors = gr.Radio(label="Extract from safetensors", choices=["yes", "no"], value="no")
                radio_sd_version = gr.Radio(label="Choose the model version", choices=["v1", "v2", "v2.1"])
                gr.Markdown("Conversion may take a few minutes.")
                btn_convert = gr.Button("Convert & Push")

    error_output = gr.Markdown(label="Output")

    input_token.change(
        fn=on_token_change,
        inputs=input_token,
        outputs=[group_model, radio_model_names, btn_get_ckpts, error_output],
        queue=False,
        scroll_to_output=True)
    
    radio_model_names.change(
        lambda x: gr.update(visible=x == "Other"),
        inputs=radio_model_names,
        outputs=input_model,
        queue=False,
        scroll_to_output=True)
    
    btn_get_ckpts.click(
        fn=get_ckpt_names,
        inputs=[input_token, radio_model_names, input_model],
        outputs=[error_output, radio_ckpts, group_convert],
        scroll_to_output=True,
        queue=False
    )

    btn_convert.click(
        fn=convert_and_push,
        inputs=[radio_model_names, input_model, radio_ckpts, radio_sd_version, input_token, path_in_repo, ema, safetensors],
        outputs=error_output,
        scroll_to_output=True
    )

    # gr.Markdown("""<img src="https://raw.githubusercontent.com/huggingface/diffusers/main/docs/source/imgs/diffusers_library.jpg" width="150"/>""")
    gr.HTML("""
    <div style="border-top: 1px solid #303030;">
      <br>
      <p>Space by: <a href="https://twitter.com/hahahahohohe"><img src="https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social" alt="Twitter Follow"></a></p><br>
      <a href="https://www.buymeacoffee.com/anzorq" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 45px !important;width: 162px !important;" ></a><br><br>
      <p><img src="https://visitor-badge.glitch.me/badge?page_id=anzorq.sd-to-diffusers" alt="visitors"></p>
    </div>
    """)
    
demo.queue()
demo.launch(debug=True, share=utils.is_google_colab())