File size: 4,438 Bytes
2cc021a
e331aa7
 
 
2cc021a
e331aa7
2cc021a
e331aa7
 
 
 
 
 
2cc021a
 
 
e331aa7
 
 
d90dedd
e331aa7
 
d5cdfff
e331aa7
 
d5cdfff
e331aa7
 
 
 
 
e7c1d62
 
 
 
 
2cc021a
 
 
e331aa7
 
 
2cc021a
d5cdfff
2cc021a
 
 
d5cdfff
2cc021a
 
e331aa7
 
 
 
2cc021a
e331aa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5cdfff
e331aa7
 
 
 
 
 
 
 
 
d5cdfff
 
d90dedd
e331aa7
9c57b91
d5cdfff
2cc021a
 
e331aa7
 
 
9c57b91
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import gradio as gr
import requests
import os
import shutil
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import Optional

import torch
from io import BytesIO

from huggingface_hub import CommitInfo, Discussion, HfApi, hf_hub_download
from huggingface_hub.file_download import repo_folder_name
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
    download_from_original_stable_diffusion_ckpt, download_controlnet_from_original_ckpt
)
from transformers import CONFIG_MAPPING


COMMIT_MESSAGE = " This PR adds fp32 and fp16 weights in PyTorch and safetensors format to {}"


def convert_single(model_id: str, filename: str, model_type: str, sample_size: int, scheduler_type: str, extract_ema: bool, folder: str, progress):
    from_safetensors = filename.endswith(".safetensors")

    progress(0, desc="Downloading model")
    local_file = os.path.join(model_id, filename)
    ckpt_file = local_file if os.path.isfile(local_file) else hf_hub_download(repo_id=model_id, filename=filename)

    if model_type == "v1":
        config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
    elif model_type == "v2":
        if sample_size == 512:
            config_url = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference.yaml"
        else:
            config_url = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml"
    elif model_type == "ControlNet":
        config_url = (Path(model_id)/"resolve/main"/filename).with_suffix(".yaml")
        config_url = "https://huggingface.co/" + str(config_url)

    config_file = BytesIO(requests.get(config_url).content)

    if model_type == "ControlNet":
        progress(0.2, desc="Converting ControlNet Model")
        pipeline = download_controlnet_from_original_ckpt(ckpt_file, config_file, image_size=sample_size, from_safetensors=from_safetensors, extract_ema=extract_ema)
        to_args = {"dtype": torch.float16}
    else:
        progress(0.1, desc="Converting Model")
        pipeline = download_from_original_stable_diffusion_ckpt(ckpt_file, config_file, image_size=sample_size, scheduler_type=scheduler_type, from_safetensors=from_safetensors, extract_ema=extract_ema)
        to_args = {"torch_dtype": torch.float16}

    pipeline.save_pretrained(folder)
    pipeline.save_pretrained(folder, safe_serialization=True)

    pipeline = pipeline.to(**to_args)
    pipeline.save_pretrained(folder, variant="fp16")
    pipeline.save_pretrained(folder, safe_serialization=True, variant="fp16")

    return folder


def previous_pr(api: "HfApi", model_id: str, pr_title: str) -> Optional["Discussion"]:
    try:
        discussions = api.get_repo_discussions(repo_id=model_id)
    except Exception:
        return None
    for discussion in discussions:
        if discussion.status == "open" and discussion.is_pull_request and discussion.title == pr_title:
            details = api.get_discussion_details(repo_id=model_id, discussion_num=discussion.num)
            if details.target_branch == "refs/heads/main":
                return discussion


def convert(token: str, model_id: str, filename: str, model_type: str, sample_size: int = 512, scheduler_type: str = "pndm", extract_ema: bool = True, progress=gr.Progress()):
    api = HfApi()

    pr_title = "Adding `diffusers` weights of this model"

    with TemporaryDirectory() as d:
        folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
        os.makedirs(folder)
        new_pr = None
        try:
            folder = convert_single(model_id, filename, model_type, sample_size, scheduler_type, extract_ema, folder, progress)
            progress(0.7, desc="Uploading to Hub")
            new_pr  = api.upload_folder(folder_path=folder, path_in_repo="./", repo_id=model_id, repo_type="model", token=token, commit_message=pr_title, commit_description=COMMIT_MESSAGE.format(model_id), create_pr=True)
            pr_number = new_pr.split("%2F")[-1].split("/")[0]
            link = f"Pr created at: {'https://huggingface.co/' + os.path.join(model_id, 'discussions', pr_number)}"
            progress(1, desc="Done")
        except Exception as e:
            raise gr.exceptions.Error(str(e))
        finally:
            shutil.rmtree(folder)

        return link