import os import subprocess from huggingface_hub import HfApi, upload_folder import gradio as gr import hf_utils import utils from safetensors import safe_open import torch subprocess.run(["git", "clone", "https://github.com/huggingface/diffusers", "diffs"]) def error_str(error, title="Error"): return f"""#### {title} {error}""" if error else "" def on_token_change(token): model_names, error = hf_utils.get_my_model_names(token) if model_names: model_names.append("Other") return gr.update(visible=bool(model_names)), gr.update(choices=model_names, value=model_names[0] if model_names else None), gr.update(visible=bool(model_names)), gr.update(value=error_str(error)) def url_to_model_id(model_id_str): return model_id_str.split("/")[-2] + "/" + model_id_str.split("/")[-1] if model_id_str.startswith("https://huggingface.co/") else model_id_str def get_ckpt_names(token, radio_model_names, input_model): model_id = url_to_model_id(input_model) if radio_model_names == "Other" else radio_model_names if token == "" or model_id == "": return error_str("Please enter both a token and a model name.", title="Invalid input"), gr.update(choices=[]), gr.update(visible=False) try: api = HfApi(token=token) ckpt_files = [f for f in api.list_repo_files(repo_id=model_id) if f.endswith(".ckpt")] if not ckpt_files: return error_str("No checkpoint files found in the model repo."), gr.update(choices=[]), gr.update(visible=False) return None, gr.update(choices=ckpt_files, value=ckpt_files[0], visible=True), gr.update(visible=True) except Exception as e: return error_str(e), gr.update(choices=[]), None def convert_and_push(radio_model_names, input_model, ckpt_name, sd_version, token, path_in_repo, ema, safetensors): extract_ema = ema == "ema" if sd_version == None: return error_str("You must select a stable diffusion version.", title="Invalid input") model_id = url_to_model_id(input_model) if radio_model_names == "Other" else radio_model_names try: model_id = url_to_model_id(model_id) # 1. Download the checkpoint file ckpt_path, revision = hf_utils.download_file(repo_id=model_id, filename=ckpt_name, token=token) if safetensors == "yes": tensors = {} with safe_open(ckpt_path, framework="pt", device="cpu") as f: for key in f.keys(): tensors[key] = f.get_tensor(key) new_checkpoint_path = "/".join(ckpt_path.split("/")[:-1] + ["model_safe.ckpt"]) torch.save(tensors, new_checkpoint_path) ckpt_path = new_checkpoint_path print("Converting ckpt_path", ckpt_path) print(ckpt_path) # 2. Run the conversion script os.makedirs(model_id, exist_ok=True) run_command = [ "python3", "./diffs/scripts/convert_original_stable_diffusion_to_diffusers.py", "--checkpoint_path", ckpt_path, "--dump_path" , model_id, ] if extract_ema: run_command.append("--extract_ema") subprocess.run(run_command) # 3. Push to the model repo commit_message="Add Diffusers weights" upload_folder( folder_path=model_id, repo_id=model_id, path_in_repo=path_in_repo, token=token, create_pr=True, commit_message=commit_message, commit_description=f"Add Diffusers weights converted from checkpoint `{ckpt_name}` in revision {revision}", ) # # 4. Delete the downloaded checkpoint file, yaml files, and the converted model folder hf_utils.delete_file(revision) subprocess.run(["rm", "-rf", model_id.split('/')[0]]) import glob for f in glob.glob("*.yaml*"): subprocess.run(["rm", "-rf", f]) return f"""Successfully converted the checkpoint and opened a PR to add the weights to the model repo. You can view and merge the PR [here]({hf_utils.get_pr_url(HfApi(token=token), model_id, commit_message)}).""" return "Done" except Exception as e: return error_str(e) DESCRIPTION = """### Convert a stable diffusion checkpoint to Diffusers🧨 With this space, you can easily convert a CompVis stable diffusion checkpoint to Diffusers and automatically create a pull request to the model repo. You can choose to convert a checkpoint from one of your own models, or from any other model on the Hub. You can skip the queue by running the app in the colab: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/qunash/f0f3152c5851c0c477b68b7b98d547fe/convert-sd-to-diffusers.ipynb)""" with gr.Blocks() as demo: gr.Markdown(DESCRIPTION) with gr.Row(): with gr.Column(scale=11): with gr.Column(): gr.Markdown("## 1. Load model info") input_token = gr.Textbox( max_lines=1, type="password", label="Enter your Hugging Face token", placeholder="READ permission is sufficient" ) gr.Markdown("You can get a token [here](https://huggingface.co/settings/tokens)") with gr.Group(visible=False) as group_model: radio_model_names = gr.Radio(label="Choose a model") input_model = gr.Textbox( max_lines=1, label="Model name or URL", placeholder="username/model_name", visible=False, ) btn_get_ckpts = gr.Button("Load", visible=False) with gr.Column(scale=10): with gr.Column(visible=False) as group_convert: gr.Markdown("## 2. Convert to Diffusers🧨") radio_ckpts = gr.Radio(label="Choose the checkpoint to convert", visible=False) path_in_repo = gr.Textbox(label="Path where the weights will be saved", placeholder="Leave empty for root folder") ema = gr.Radio(label="Extract EMA or non-EMA?", choices=["ema", "non-ema"]) safetensors = gr.Radio(label="Extract from safetensors", choices=["yes", "no"], value="no") radio_sd_version = gr.Radio(label="Choose the model version", choices=["v1", "v2", "v2.1"]) gr.Markdown("Conversion may take a few minutes.") btn_convert = gr.Button("Convert & Push") error_output = gr.Markdown(label="Output") input_token.change( fn=on_token_change, inputs=input_token, outputs=[group_model, radio_model_names, btn_get_ckpts, error_output], queue=False, scroll_to_output=True) radio_model_names.change( lambda x: gr.update(visible=x == "Other"), inputs=radio_model_names, outputs=input_model, queue=False, scroll_to_output=True) btn_get_ckpts.click( fn=get_ckpt_names, inputs=[input_token, radio_model_names, input_model], outputs=[error_output, radio_ckpts, group_convert], scroll_to_output=True, queue=False ) btn_convert.click( fn=convert_and_push, inputs=[radio_model_names, input_model, radio_ckpts, radio_sd_version, input_token, path_in_repo, ema, safetensors], outputs=error_output, scroll_to_output=True ) # gr.Markdown("""""") gr.HTML("""
""") demo.queue() demo.launch(debug=True, share=utils.is_google_colab())