digiplay commited on
Commit
62cfe59
·
verified ·
1 Parent(s): 8ed3021

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +93 -0
app.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ import numpy as np
4
+ import random
5
+ from diffusers import DiffusionPipeline
6
+
7
+ device = "cuda" if torch.cuda.is_available() else "cpu"
8
+ torch_dtype = torch.float16 if device == "cuda" else torch.float32
9
+
10
+ MAX_SEED = np.iinfo(np.int32).max
11
+ MAX_IMAGE_SIZE = 1024
12
+
13
+ # 預設可選模型
14
+ available_models = [
15
+ "digiplay/AM-mix1",
16
+ "digiplay/pan04",
17
+ "digiplay/2K"
18
+ ]
19
+
20
+ def load_model(selected_model_id, custom_model_id):
21
+ model_id = custom_model_id.strip() if custom_model_id.strip() else selected_model_id
22
+ try:
23
+ pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
24
+ return pipe, model_id, f"✅ Model '{model_id}' loaded successfully!"
25
+ except Exception as e:
26
+ return None, "", f"❌ Failed to load model: {e}"
27
+
28
+ def generate_image(pipe, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
29
+ if pipe is None:
30
+ raise ValueError("No model loaded. Please load a model first.")
31
+
32
+ if randomize_seed:
33
+ seed = random.randint(0, MAX_SEED)
34
+
35
+ generator = torch.Generator().manual_seed(seed)
36
+ image = pipe(
37
+ prompt=prompt,
38
+ negative_prompt=negative_prompt,
39
+ width=width,
40
+ height=height,
41
+ guidance_scale=guidance_scale,
42
+ num_inference_steps=num_inference_steps,
43
+ generator=generator,
44
+ ).images[0]
45
+
46
+ return image, seed
47
+
48
+ with gr.Blocks(css="#container { max-width: 700px; margin: auto; }") as demo:
49
+ gr.Markdown("## Text-to-Image Generator with Model Selector")
50
+
51
+ pipe_state = gr.State(None)
52
+ model_id_state = gr.State("")
53
+
54
+ with gr.Column(elem_id="container"):
55
+ gr.Markdown("### 1. Choose or Enter Model")
56
+ with gr.Row():
57
+ selected_model = gr.Dropdown(label="Choose a model", choices=available_models, value=available_models[0])
58
+ custom_model = gr.Textbox(label="Or enter custom model ID", placeholder="e.g. runwayml/stable-diffusion-v1-5")
59
+
60
+ load_button = gr.Button("Load Model")
61
+ load_status = gr.Textbox(label="Model Load Status", interactive=False)
62
+
63
+ load_button.click(
64
+ fn=load_model,
65
+ inputs=[selected_model, custom_model],
66
+ outputs=[pipe_state, model_id_state, load_status]
67
+ )
68
+
69
+ gr.Markdown("### 2. Generate Image")
70
+ prompt = gr.Textbox(label="Prompt", placeholder="e.g. A futuristic city at night")
71
+ negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="(optional)", value="", visible=True)
72
+ with gr.Row():
73
+ width = gr.Slider(256, MAX_IMAGE_SIZE, step=32, value=512, label="Width")
74
+ height = gr.Slider(256, MAX_IMAGE_SIZE, step=32, value=512, label="Height")
75
+ with gr.Row():
76
+ guidance_scale = gr.Slider(0.0, 10.0, step=0.1, value=7.5, label="Guidance Scale")
77
+ num_inference_steps = gr.Slider(1, 50, step=1, value=25, label="Inference Steps")
78
+ with gr.Row():
79
+ seed = gr.Slider(0, MAX_SEED, step=1, value=0, label="Seed")
80
+ randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
81
+
82
+ generate_button = gr.Button("Generate Image")
83
+ output_image = gr.Image(label="Result")
84
+ final_seed = gr.Number(label="Used Seed", precision=0)
85
+
86
+ generate_button.click(
87
+ fn=generate_image,
88
+ inputs=[pipe_state, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
89
+ outputs=[output_image, final_seed]
90
+ )
91
+
92
+ if __name__ == "__main__":
93
+ demo.launch()