Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import random
|
5 |
+
from diffusers import DiffusionPipeline
|
6 |
+
|
7 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
+
torch_dtype = torch.float16 if device == "cuda" else torch.float32
|
9 |
+
|
10 |
+
MAX_SEED = np.iinfo(np.int32).max
|
11 |
+
MAX_IMAGE_SIZE = 1024
|
12 |
+
|
13 |
+
# 預設可選模型
|
14 |
+
available_models = [
|
15 |
+
"digiplay/AM-mix1",
|
16 |
+
"digiplay/pan04",
|
17 |
+
"digiplay/2K"
|
18 |
+
]
|
19 |
+
|
20 |
+
def load_model(selected_model_id, custom_model_id):
|
21 |
+
model_id = custom_model_id.strip() if custom_model_id.strip() else selected_model_id
|
22 |
+
try:
|
23 |
+
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
|
24 |
+
return pipe, model_id, f"✅ Model '{model_id}' loaded successfully!"
|
25 |
+
except Exception as e:
|
26 |
+
return None, "", f"❌ Failed to load model: {e}"
|
27 |
+
|
28 |
+
def generate_image(pipe, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
29 |
+
if pipe is None:
|
30 |
+
raise ValueError("No model loaded. Please load a model first.")
|
31 |
+
|
32 |
+
if randomize_seed:
|
33 |
+
seed = random.randint(0, MAX_SEED)
|
34 |
+
|
35 |
+
generator = torch.Generator().manual_seed(seed)
|
36 |
+
image = pipe(
|
37 |
+
prompt=prompt,
|
38 |
+
negative_prompt=negative_prompt,
|
39 |
+
width=width,
|
40 |
+
height=height,
|
41 |
+
guidance_scale=guidance_scale,
|
42 |
+
num_inference_steps=num_inference_steps,
|
43 |
+
generator=generator,
|
44 |
+
).images[0]
|
45 |
+
|
46 |
+
return image, seed
|
47 |
+
|
48 |
+
with gr.Blocks(css="#container { max-width: 700px; margin: auto; }") as demo:
|
49 |
+
gr.Markdown("## Text-to-Image Generator with Model Selector")
|
50 |
+
|
51 |
+
pipe_state = gr.State(None)
|
52 |
+
model_id_state = gr.State("")
|
53 |
+
|
54 |
+
with gr.Column(elem_id="container"):
|
55 |
+
gr.Markdown("### 1. Choose or Enter Model")
|
56 |
+
with gr.Row():
|
57 |
+
selected_model = gr.Dropdown(label="Choose a model", choices=available_models, value=available_models[0])
|
58 |
+
custom_model = gr.Textbox(label="Or enter custom model ID", placeholder="e.g. runwayml/stable-diffusion-v1-5")
|
59 |
+
|
60 |
+
load_button = gr.Button("Load Model")
|
61 |
+
load_status = gr.Textbox(label="Model Load Status", interactive=False)
|
62 |
+
|
63 |
+
load_button.click(
|
64 |
+
fn=load_model,
|
65 |
+
inputs=[selected_model, custom_model],
|
66 |
+
outputs=[pipe_state, model_id_state, load_status]
|
67 |
+
)
|
68 |
+
|
69 |
+
gr.Markdown("### 2. Generate Image")
|
70 |
+
prompt = gr.Textbox(label="Prompt", placeholder="e.g. A futuristic city at night")
|
71 |
+
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="(optional)", value="", visible=True)
|
72 |
+
with gr.Row():
|
73 |
+
width = gr.Slider(256, MAX_IMAGE_SIZE, step=32, value=512, label="Width")
|
74 |
+
height = gr.Slider(256, MAX_IMAGE_SIZE, step=32, value=512, label="Height")
|
75 |
+
with gr.Row():
|
76 |
+
guidance_scale = gr.Slider(0.0, 10.0, step=0.1, value=7.5, label="Guidance Scale")
|
77 |
+
num_inference_steps = gr.Slider(1, 50, step=1, value=25, label="Inference Steps")
|
78 |
+
with gr.Row():
|
79 |
+
seed = gr.Slider(0, MAX_SEED, step=1, value=0, label="Seed")
|
80 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
81 |
+
|
82 |
+
generate_button = gr.Button("Generate Image")
|
83 |
+
output_image = gr.Image(label="Result")
|
84 |
+
final_seed = gr.Number(label="Used Seed", precision=0)
|
85 |
+
|
86 |
+
generate_button.click(
|
87 |
+
fn=generate_image,
|
88 |
+
inputs=[pipe_state, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
89 |
+
outputs=[output_image, final_seed]
|
90 |
+
)
|
91 |
+
|
92 |
+
if __name__ == "__main__":
|
93 |
+
demo.launch()
|