import gradio as gr from fastai import * from fastai.vision.all import * def is_holdingweapon(x): return parent_label(x) learn = load_learner('model_resnet34.pkl') categories = ('Human holding Weapon','No Weapon detected','Weapon') def classify_image(img): pred,idx,probs = learn.predict(img) return dict(zip(categories,map(float,probs))) #float because gradio doesnt take tensors image = gr.inputs.Image(shape=(192,192)) label = gr.outputs.Label() examples = ['human_weapon1.jpg','weapon22.jpg'] intf = gr.Interface(fn = classify_image,inputs = image,outputs=label,examples=examples) intf.launch(inline = False)