File size: 6,795 Bytes
6723494
 
 
 
 
 
 
 
 
 
153ee9b
6723494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a242d9
6723494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2751f79
 
 
 
6723494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a242d9
 
 
6723494
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import numpy.typing as npt
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import cv2

from torchvision.ops.boxes import batched_nms
from app.mobile_sam import SamPredictor
from app.mobile_sam.utils import batched_mask_to_box
from app.sam.postprocess import clean_mask_torch


def point_selection(mask_sim, topk: int = 1):
    # Top-1 point selection
    _, h = mask_sim.shape
    topk_xy = mask_sim.flatten(0).topk(topk)[1]
    topk_x = (topk_xy // h).unsqueeze(0)
    topk_y = topk_xy - topk_x * h
    topk_xy = torch.cat((topk_y, topk_x), dim=0).permute(1, 0)
    topk_label = np.array([1] * topk)
    topk_xy = topk_xy.cpu().numpy()

    return topk_xy, topk_label


def mask_nms(
    masks: list[npt.NDArray], scores: list[float], iou_thresh: float = 0.2
) -> tuple[list[npt.NDArray], list[float]]:
    ious = np.zeros((len(masks), len(masks)))
    np_masks = np.array(masks).astype(bool)
    np_scores = np.array(scores)
    remove_indices = set()
    for i in range(len(masks)):
        mask_i = np_masks[i, :, :]
        intersection_sum = np.logical_and(mask_i, np_masks).sum(axis=(1, 2))
        union = np.logical_or(mask_i, np_masks)
        ious_i = intersection_sum / union.sum(axis=(1, 2))
        ious[i, :] = ious_i

        # if the mask completely overlaps another mask, take the highest
        # scoring mask and remove the lower (current) one
        overlap = intersection_sum >= np_masks.sum(axis=(1, 2)) * 0.90
        argmax_idx = np_scores[overlap].argmax()
        max_idx = np.where(overlap == True)[0][argmax_idx]
        if max_idx != i:
            remove_indices.add(i)

    for i in range(ious.shape[0]):
        ious_i = ious[i, :]
        idxs = np.where(ious_i > iou_thresh)[0]
        keep = idxs[np.argmax(np_scores[idxs])]
        if keep != i:
            remove_indices.add(i)

    return [masks[i] for i in range(len(masks)) if i not in remove_indices], [
        scores[i] for i in range(len(masks)) if i not in remove_indices
    ]


class MaskWeights(nn.Module):
    def __init__(self):
        super().__init__()
        self.weights = nn.Parameter(torch.ones(2, 1, requires_grad=True) / 3)


class PerSAM:
    def __init__(
        self,
        sam: SamPredictor,
        target_feat: torch.Tensor,
        max_objects: int,
        score_thresh: float,
        nms_iou_thresh: float,
        mask_weights: torch.Tensor,
    ) -> None:
        super().__init__()
        self.sam = sam
        self.weights = mask_weights
        self.target_feat = target_feat
        self.max_objects = max_objects
        self.score_thresh = score_thresh
        self.nms_iou_thresh = nms_iou_thresh

    def __call__(self, x: npt.NDArray) -> tuple[npt.NDArray, npt.NDArray, npt.NDArray]:
        return fast_inference(
            self.sam,
            x,
            self.target_feat,
            self.weights,
            self.max_objects,
            self.score_thresh,
            self.nms_iou_thresh,
        )


def fast_inference(
    predictor: SamPredictor,
    image: npt.NDArray,
    target_feat: torch.Tensor,
    weights: torch.Tensor,
    max_objects: int,
    score_thresh: float,
    nms_iou_thresh: float = 0.2,
) -> tuple[npt.NDArray | None, npt.NDArray | None, npt.NDArray | None]:
    weights_np = weights.detach().cpu().numpy()
    pred_masks = []
    pred_scores = []

    # Image feature encoding
    predictor.set_image(image)
    test_feat = predictor.features.squeeze()

    # Cosine similarity
    C, h, w = test_feat.shape
    test_feat = test_feat / test_feat.norm(dim=0, keepdim=True)
    test_feat = test_feat.reshape(C, h * w)
    sim = target_feat @ test_feat

    sim = sim.reshape(1, 1, h, w)
    sim = F.interpolate(sim, scale_factor=4, mode="bilinear")
    sim = predictor.model.postprocess_masks(
        sim, input_size=predictor.input_size, original_size=predictor.original_size
    ).squeeze()

    for _ in range(max_objects):
        # Positive location prior
        topk_xy, topk_label = point_selection(sim, topk=1)

        # First-step prediction
        logits_high, scores, logits = predictor.predict(
            point_coords=topk_xy,
            point_labels=topk_label,
            multimask_output=True,
            return_logits=True,
            return_numpy=False,
        )
        logits = logits.detach().cpu().numpy()

        # Weighted sum three-scale masks
        logits_high = logits_high * weights.unsqueeze(-1)
        logit_high = logits_high.sum(0)
        # mask = (logit_high > 0).detach().cpu().numpy()

        mask = (logit_high > 0)
        mask = clean_mask_torch(mask).bool()[0, 0, :, :].detach().cpu().numpy()

        logits = logits * weights_np[..., None]
        logit = logits.sum(0)

        # Cascaded Post-refinement-1
        y, x = np.nonzero(mask)
        x_min = x.min()
        x_max = x.max()
        y_min = y.min()
        y_max = y.max()
        input_box = np.array([x_min, y_min, x_max, y_max])
        masks, scores, logits = predictor.predict(
            point_coords=topk_xy,
            point_labels=topk_label,
            box=input_box[None, :],
            mask_input=logit[None, :, :],
            multimask_output=True,
        )
        best_idx = np.argmax(scores)

        # Cascaded Post-refinement-2
        y, x = np.nonzero(masks[best_idx])
        x_min = x.min()
        x_max = x.max()
        y_min = y.min()
        y_max = y.max()
        input_box = np.array([x_min, y_min, x_max, y_max])
        masks, scores, logits = predictor.predict(
            point_coords=topk_xy,
            point_labels=topk_label,
            box=input_box[None, :],
            mask_input=logits[best_idx : best_idx + 1, :, :],
            multimask_output=True,
            return_numpy=False,
        )

        best_idx = np.argmax(scores.detach().cpu().numpy())
        final_mask = masks[best_idx]
        score = sim[topk_xy[0][1], topk_xy[0][0]].item()
        final_mask_dilate = cv2.dilate(
            final_mask.detach().cpu().numpy().astype(np.uint8), np.ones((5, 5), np.uint8), iterations=1
        )

        if score < score_thresh:
            break

        sim[final_mask_dilate] = 0
        pred_masks.append(final_mask)
        pred_scores.append(score)

    if len(pred_masks) == 0:
        return None, None, None

    pred_masks = torch.stack(pred_masks)
    bboxes = batched_mask_to_box(pred_masks)
    keep_by_nms = batched_nms(
        bboxes.float(),
        torch.as_tensor(pred_scores),
        torch.zeros_like(bboxes[:, 0]),
        iou_threshold=nms_iou_thresh,
    )
    pred_masks = pred_masks[keep_by_nms].cpu().numpy()
    pred_scores = np.array(pred_scores)[keep_by_nms.cpu().numpy()]
    bboxes = bboxes[keep_by_nms].int().cpu().numpy()
    return pred_masks, bboxes, pred_scores