dimbyTa's picture
Adding caching and row plotting
963c6da
raw
history blame
3.53 kB
#import streamlit as st
#from src.load_data import load_dataframe, sort_by
#from src.plot import plot_radar_chart_index, plot_radar_chart_name
#from st_aggrid import GridOptionsBuilder, AgGrid
from st_aggrid import GridOptionsBuilder, AgGrid
import streamlit as st
from .load_data import load_dataframe, sort_by
from .plot import plot_radar_chart_name, plot_radar_chart_rows
def display_app():
st.markdown("# Open LLM Leaderboard Viz")
st.markdown("This is a visualization of the results in [open-llm-leaderboard/results](https://huggingface.co/datasets/open-llm-leaderboard/results)")
st.markdown("To select a model, click on the checkbox beside its name.")
#container = st.container(height = 150)
dataframe = load_dataframe()
sort_selection = st.selectbox(label = "Sort by:", options = list(dataframe.columns))
ascending = True
indexes = None
if sort_selection is None:
sort_selection = "model_name"
ascending = True
elif sort_selection == "model_name":
ascending = True
else:
ascending = False
name = st.text_input(label = ":mag: Search by name")
if name is not None:
indexes = dataframe["model_name"].str.contains(name)
if len(indexes) > 0:
dataframe = dataframe[indexes]
else:
dataframe = load_dataframe()
dataframe = sort_by(dataframe=dataframe, column_name=sort_selection, ascending= ascending)
dataframe_display = dataframe.copy()
dataframe_display[["ARC", "HellaSwag", "TruthfulQA", "Winogrande", "GSM8K" ,"MMLU", "Average"]] = dataframe[["ARC", "HellaSwag", "TruthfulQA", "Winogrande", "GSM8K" ,"MMLU", "Average"]].astype(float)
dataframe_display[["ARC", "HellaSwag", "TruthfulQA", "Winogrande", "GSM8K" ,"MMLU", "Average"]] = dataframe_display[["ARC", "HellaSwag", "TruthfulQA", "Winogrande", "GSM8K" ,"MMLU", "Average"]] *100
dataframe_display[["ARC", "HellaSwag", "TruthfulQA", "Winogrande", "GSM8K" ,"MMLU", "Average"]] = dataframe_display[["ARC", "HellaSwag", "TruthfulQA", "Winogrande", "GSM8K" ,"MMLU", "Average"]].round(2)
#Infer basic colDefs from dataframe types
gb = GridOptionsBuilder.from_dataframe(dataframe_display)
gb.configure_selection(selection_mode = "single", use_checkbox=True)
gb.configure_grid_options(domLayout='normal')
gridOptions = gb.build()
column1,col3, column2 = st.columns([0.26, 0.05, 0.69], gap = "small")
with column1:
#with container:
#st.dataframe(dataframe_display)
grid_response = AgGrid(
dataframe_display,
gridOptions=gridOptions,
height=300,
width='40%'
)
subdata = dataframe.head(1)
if len(subdata) > 0:
model_name = subdata["model_name"].values[0]
else:
model_name = ""
with column2:
if grid_response['selected_rows'] is not None and len(grid_response['selected_rows']) > 0:
figure = plot_radar_chart_rows(rows=grid_response['selected_rows'])
st.plotly_chart(figure, use_container_width=True)
else:
if len(subdata)>0:
figure = plot_radar_chart_name(dataframe=subdata, model_name=model_name)
st.plotly_chart(figure, use_container_width=True)
if grid_response['selected_rows'] is not None and len(grid_response['selected_rows']) > 0:
st.markdown("**Model name:** %s" % grid_response['selected_rows'][0]["model_name"])
else:
st.markdown("**Model name:** %s" % model_name)