import streamlit as st import pandas as pd @st.cache_data def load_dataframe() -> pd.DataFrame: """ Load dataframe from the csv file in public directory Returns dataframe: a pd.DataFrame of the average scores of the LLMs on each task """ dataframe = pd.read_csv("public/datasets/models_scores.csv") dataframe = dataframe.drop(columns = "Unnamed: 0") return dataframe @st.cache_data def show_dataframe_top(n:int , dataframe: pd.DataFrame) -> pd.DataFrame: """ read only the n-th first row Arguments -n: an integer telling the number of row -dataframe: the dataframe to slice Returns dataframe: a pd.DataFrame of the average scores of the LLMs on each task """ return dataframe.head(n) @st.cache_data def sort_by(dataframe: pd.DataFrame, column_name: str, ascending:bool = False) -> pd.DataFrame: """ Sort the dataframe by column_name Arguments: - dataframe: a pandas dataframe to sort - column_name: a string stating the column to sort the dataframe by - ascending: a boolean stating to sort in ascending order or not, default to False Returns: a sorted dataframe """ return dataframe.sort_values(by = column_name, ascending = ascending ) @st.cache_data def search_by_name(name: str) -> pd.DataFrame: """ Search a model by its name Arguments: - name: the name of the model or part of it Returns: a pandas Dataframe of every row that contains name """ dataframe = load_dataframe() indexes = dataframe["model_name"].str.contains(name) return dataframe[indexes]