File size: 2,534 Bytes
5325fcc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
# @package __global__
# WARNING: This is a base configuration file shared across ALL solvers in AudioCraft
# Please don't update this file directly. Instead use distinct configuration files
# to override the below configuration.
solver: ???
fsdp:
use: false # should we use FSDP.
param_dtype: float16 # equivalent to autocast_dtype for FSDP.
reduce_dtype: float32 # gradient averaging dtype, float32 will give max stability.
buffer_dtype: float32 # dtype used for buffers, we don't have much buffers, so let's leave it.
sharding_strategy: shard_grad_op # can be shard_grad_op or full_shard.
# full_shard will use less memory but slower ??
per_block: true # If True, uses nested FSDP.
profiler:
enabled: false
deadlock:
use: false
timeout: 600
dataset:
batch_size: ???
num_workers: 10
segment_duration: null
num_samples: null
return_info: false
shuffle: false
sample_on_duration: true
sample_on_weight: true
min_segment_ratio: 0.5
train:
num_samples: null
shuffle: true
shuffle_seed: 0 # if you want to sample the data differently.
permutation_on_files: false
valid:
num_samples: null
evaluate:
num_samples: null
generate:
num_samples: null
return_info: true
checkpoint:
save_last: true
save_every: null
keep_last: null
keep_every_states: null
generate:
every: null
path: 'samples'
audio:
format: 'mp3'
strategy: 'clip'
sample_rate: null
lm:
use_sampling: false
temp: 1.0
top_k: 0
top_p: 0.0
evaluate:
every: null
num_workers: 5
truncate_audio: null
fixed_generation_duration: null # in secs
metrics:
base: true # run default evaluation (e.g. like train/valid stage)
optim:
epochs: ???
updates_per_epoch: null
lr: ???
optimizer: ???
adam:
betas: [0.9, 0.999]
weight_decay: 0.
ema:
use: false # whether to use EMA or not
updates: ${optim.updates_per_epoch} # frequency of updates of the EMA
device: cpu # device for EMA, can be put on GPU if more frequent updates
decay: 0.99 # EMA decay value, if null, no EMA is used
schedule:
lr_scheduler: null
step:
step_size: null
gamma: null
exponential:
lr_decay: null
cosine:
warmup: null
lr_min_ratio: 0.0
cycle_length: 1.0
polynomial_decay:
warmup: null
zero_lr_warmup_steps: 0
end_lr: 0.0
power: 1
inverse_sqrt:
warmup: null
warmup_init_lr: 0.0
linear_warmup:
warmup: null
warmup_init_lr: 0.0
|