|
|
|
|
|
|
|
|
|
|
|
|
|
import typing as tp |
|
|
|
from einops import rearrange, repeat |
|
import flashy |
|
import torch |
|
from torch import nn, einsum |
|
import torch.nn.functional as F |
|
|
|
|
|
def exists(val: tp.Optional[tp.Any]) -> bool: |
|
return val is not None |
|
|
|
|
|
def default(val: tp.Any, d: tp.Any) -> tp.Any: |
|
return val if exists(val) else d |
|
|
|
|
|
def l2norm(t): |
|
return F.normalize(t, p=2, dim=-1) |
|
|
|
|
|
def ema_inplace(moving_avg, new, decay: float): |
|
moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay)) |
|
|
|
|
|
def laplace_smoothing(x, n_categories: int, epsilon: float = 1e-5): |
|
return (x + epsilon) / (x.sum() + n_categories * epsilon) |
|
|
|
|
|
def uniform_init(*shape: int): |
|
t = torch.empty(shape) |
|
nn.init.kaiming_uniform_(t) |
|
return t |
|
|
|
|
|
def sample_vectors(samples, num: int): |
|
num_samples, device = samples.shape[0], samples.device |
|
|
|
if num_samples >= num: |
|
indices = torch.randperm(num_samples, device=device)[:num] |
|
else: |
|
indices = torch.randint(0, num_samples, (num,), device=device) |
|
|
|
return samples[indices] |
|
|
|
|
|
def kmeans(samples, num_clusters: int, num_iters: int = 10): |
|
dim, dtype = samples.shape[-1], samples.dtype |
|
|
|
means = sample_vectors(samples, num_clusters) |
|
|
|
for _ in range(num_iters): |
|
diffs = rearrange(samples, "n d -> n () d") - rearrange( |
|
means, "c d -> () c d" |
|
) |
|
dists = -(diffs ** 2).sum(dim=-1) |
|
|
|
buckets = dists.max(dim=-1).indices |
|
bins = torch.bincount(buckets, minlength=num_clusters) |
|
zero_mask = bins == 0 |
|
bins_min_clamped = bins.masked_fill(zero_mask, 1) |
|
|
|
new_means = buckets.new_zeros(num_clusters, dim, dtype=dtype) |
|
new_means.scatter_add_(0, repeat(buckets, "n -> n d", d=dim), samples) |
|
new_means = new_means / bins_min_clamped[..., None] |
|
|
|
means = torch.where(zero_mask[..., None], means, new_means) |
|
|
|
return means, bins |
|
|
|
|
|
def orthogonal_loss_fn(t): |
|
|
|
n = t.shape[0] |
|
normed_codes = l2norm(t) |
|
identity = torch.eye(n, device=t.device) |
|
cosine_sim = einsum("i d, j d -> i j", normed_codes, normed_codes) |
|
return ((cosine_sim - identity) ** 2).sum() / (n ** 2) |
|
|
|
|
|
class EuclideanCodebook(nn.Module): |
|
"""Codebook with Euclidean distance. |
|
|
|
Args: |
|
dim (int): Dimension. |
|
codebook_size (int): Codebook size. |
|
kmeans_init (bool): Whether to use k-means to initialize the codebooks. |
|
If set to true, run the k-means algorithm on the first training batch and use |
|
the learned centroids as initialization. |
|
kmeans_iters (int): Number of iterations used for k-means algorithm at initialization. |
|
decay (float): Decay for exponential moving average over the codebooks. |
|
epsilon (float): Epsilon value for numerical stability. |
|
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes |
|
that have an exponential moving average cluster size less than the specified threshold with |
|
randomly selected vector from the current batch. |
|
""" |
|
def __init__( |
|
self, |
|
dim: int, |
|
codebook_size: int, |
|
kmeans_init: int = False, |
|
kmeans_iters: int = 10, |
|
decay: float = 0.8, |
|
epsilon: float = 1e-5, |
|
threshold_ema_dead_code: int = 2, |
|
): |
|
super().__init__() |
|
self.decay = decay |
|
init_fn: tp.Union[tp.Callable[..., torch.Tensor], tp.Any] = uniform_init if not kmeans_init else torch.zeros |
|
embed = init_fn(codebook_size, dim) |
|
|
|
self.codebook_size = codebook_size |
|
|
|
self.kmeans_iters = kmeans_iters |
|
self.epsilon = epsilon |
|
self.threshold_ema_dead_code = threshold_ema_dead_code |
|
|
|
self.register_buffer("inited", torch.Tensor([not kmeans_init])) |
|
self.register_buffer("cluster_size", torch.zeros(codebook_size)) |
|
self.register_buffer("embed", embed) |
|
self.register_buffer("embed_avg", embed.clone()) |
|
|
|
@torch.jit.ignore |
|
def init_embed_(self, data): |
|
if self.inited: |
|
return |
|
|
|
embed, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters) |
|
self.embed.data.copy_(embed) |
|
self.embed_avg.data.copy_(embed.clone()) |
|
self.cluster_size.data.copy_(cluster_size) |
|
self.inited.data.copy_(torch.Tensor([True])) |
|
|
|
flashy.distrib.broadcast_tensors(self.buffers()) |
|
|
|
def replace_(self, samples, mask): |
|
modified_codebook = torch.where( |
|
mask[..., None], sample_vectors(samples, self.codebook_size), self.embed |
|
) |
|
self.embed.data.copy_(modified_codebook) |
|
|
|
def expire_codes_(self, batch_samples): |
|
if self.threshold_ema_dead_code == 0: |
|
return |
|
|
|
expired_codes = self.cluster_size < self.threshold_ema_dead_code |
|
if not torch.any(expired_codes): |
|
return |
|
|
|
batch_samples = rearrange(batch_samples, "... d -> (...) d") |
|
self.replace_(batch_samples, mask=expired_codes) |
|
flashy.distrib.broadcast_tensors(self.buffers()) |
|
|
|
def preprocess(self, x): |
|
x = rearrange(x, "... d -> (...) d") |
|
return x |
|
|
|
def quantize(self, x): |
|
embed = self.embed.t() |
|
dist = -( |
|
x.pow(2).sum(1, keepdim=True) |
|
- 2 * x @ embed |
|
+ embed.pow(2).sum(0, keepdim=True) |
|
) |
|
embed_ind = dist.max(dim=-1).indices |
|
return embed_ind |
|
|
|
def postprocess_emb(self, embed_ind, shape): |
|
return embed_ind.view(*shape[:-1]) |
|
|
|
def dequantize(self, embed_ind): |
|
quantize = F.embedding(embed_ind, self.embed) |
|
return quantize |
|
|
|
def encode(self, x): |
|
shape = x.shape |
|
|
|
x = self.preprocess(x) |
|
|
|
embed_ind = self.quantize(x) |
|
|
|
embed_ind = self.postprocess_emb(embed_ind, shape) |
|
return embed_ind |
|
|
|
def decode(self, embed_ind): |
|
quantize = self.dequantize(embed_ind) |
|
return quantize |
|
|
|
def forward(self, x): |
|
shape, dtype = x.shape, x.dtype |
|
x = self.preprocess(x) |
|
self.init_embed_(x) |
|
|
|
embed_ind = self.quantize(x) |
|
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype) |
|
embed_ind = self.postprocess_emb(embed_ind, shape) |
|
quantize = self.dequantize(embed_ind) |
|
|
|
if self.training: |
|
|
|
|
|
self.expire_codes_(x) |
|
ema_inplace(self.cluster_size, embed_onehot.sum(0), self.decay) |
|
embed_sum = x.t() @ embed_onehot |
|
ema_inplace(self.embed_avg, embed_sum.t(), self.decay) |
|
cluster_size = ( |
|
laplace_smoothing(self.cluster_size, self.codebook_size, self.epsilon) |
|
* self.cluster_size.sum() |
|
) |
|
embed_normalized = self.embed_avg / cluster_size.unsqueeze(1) |
|
self.embed.data.copy_(embed_normalized) |
|
|
|
return quantize, embed_ind |
|
|
|
|
|
class VectorQuantization(nn.Module): |
|
"""Vector quantization implementation. |
|
Currently supports only euclidean distance. |
|
|
|
Args: |
|
dim (int): Dimension |
|
codebook_size (int): Codebook size |
|
codebook_dim (int): Codebook dimension. If not defined, uses the specified dimension in dim. |
|
decay (float): Decay for exponential moving average over the codebooks. |
|
epsilon (float): Epsilon value for numerical stability. |
|
kmeans_init (bool): Whether to use kmeans to initialize the codebooks. |
|
kmeans_iters (int): Number of iterations used for kmeans initialization. |
|
threshold_ema_dead_code (int): |
|
channels_last (bool): Channels are the last dimension in the input tensors. |
|
commitment_weight (float): Weight for commitment loss. |
|
orthogonal_reg_weight (float): Orthogonal regularization weights. |
|
orthogonal_reg_active_codes_only (bool): Apply orthogonal regularization only on active codes. |
|
orthogonal_reg_max_codes (optional int): Maximum number of codes to consider |
|
for orthogonal regularization. |
|
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes |
|
that have an exponential moving average cluster size less than the specified threshold with |
|
randomly selected vector from the current batch. |
|
""" |
|
def __init__( |
|
self, |
|
dim: int, |
|
codebook_size: int, |
|
codebook_dim: tp.Optional[int] = None, |
|
decay: float = 0.8, |
|
epsilon: float = 1e-5, |
|
kmeans_init: bool = False, |
|
kmeans_iters: int = 10, |
|
threshold_ema_dead_code: int = 2, |
|
channels_last: bool = False, |
|
commitment_weight: float = 1., |
|
orthogonal_reg_weight: float = 0.0, |
|
orthogonal_reg_active_codes_only: bool = False, |
|
orthogonal_reg_max_codes: tp.Optional[int] = None, |
|
): |
|
super().__init__() |
|
_codebook_dim: int = default(codebook_dim, dim) |
|
|
|
requires_projection = _codebook_dim != dim |
|
self.project_in = (nn.Linear(dim, _codebook_dim) if requires_projection else nn.Identity()) |
|
self.project_out = (nn.Linear(_codebook_dim, dim) if requires_projection else nn.Identity()) |
|
|
|
self.epsilon = epsilon |
|
self.commitment_weight = commitment_weight |
|
|
|
self.orthogonal_reg_weight = orthogonal_reg_weight |
|
self.orthogonal_reg_active_codes_only = orthogonal_reg_active_codes_only |
|
self.orthogonal_reg_max_codes = orthogonal_reg_max_codes |
|
|
|
self._codebook = EuclideanCodebook(dim=_codebook_dim, codebook_size=codebook_size, |
|
kmeans_init=kmeans_init, kmeans_iters=kmeans_iters, |
|
decay=decay, epsilon=epsilon, |
|
threshold_ema_dead_code=threshold_ema_dead_code) |
|
self.codebook_size = codebook_size |
|
|
|
self.channels_last = channels_last |
|
|
|
@property |
|
def codebook(self): |
|
return self._codebook.embed |
|
|
|
@property |
|
def inited(self): |
|
return self._codebook.inited |
|
|
|
def _preprocess(self, x): |
|
if not self.channels_last: |
|
x = rearrange(x, "b d n -> b n d") |
|
return x |
|
|
|
def _postprocess(self, quantize): |
|
if not self.channels_last: |
|
quantize = rearrange(quantize, "b n d -> b d n") |
|
return quantize |
|
|
|
def encode(self, x): |
|
x = self._preprocess(x) |
|
x = self.project_in(x) |
|
embed_in = self._codebook.encode(x) |
|
return embed_in |
|
|
|
def decode(self, embed_ind): |
|
quantize = self._codebook.decode(embed_ind) |
|
quantize = self.project_out(quantize) |
|
quantize = self._postprocess(quantize) |
|
return quantize |
|
|
|
def forward(self, x): |
|
device = x.device |
|
x = self._preprocess(x) |
|
|
|
x = self.project_in(x) |
|
quantize, embed_ind = self._codebook(x) |
|
|
|
if self.training: |
|
quantize = x + (quantize - x).detach() |
|
|
|
loss = torch.tensor([0.0], device=device, requires_grad=self.training) |
|
|
|
if self.training: |
|
if self.commitment_weight > 0: |
|
commit_loss = F.mse_loss(quantize.detach(), x) |
|
loss = loss + commit_loss * self.commitment_weight |
|
|
|
if self.orthogonal_reg_weight > 0: |
|
codebook = self.codebook |
|
|
|
if self.orthogonal_reg_active_codes_only: |
|
|
|
unique_code_ids = torch.unique(embed_ind) |
|
codebook = codebook[unique_code_ids] |
|
|
|
num_codes = codebook.shape[0] |
|
if exists(self.orthogonal_reg_max_codes) and num_codes > self.orthogonal_reg_max_codes: |
|
rand_ids = torch.randperm(num_codes, device=device)[:self.orthogonal_reg_max_codes] |
|
codebook = codebook[rand_ids] |
|
|
|
orthogonal_reg_loss = orthogonal_loss_fn(codebook) |
|
loss = loss + orthogonal_reg_loss * self.orthogonal_reg_weight |
|
|
|
quantize = self.project_out(quantize) |
|
quantize = self._postprocess(quantize) |
|
|
|
return quantize, embed_ind, loss |
|
|
|
|
|
class ResidualVectorQuantization(nn.Module): |
|
"""Residual vector quantization implementation. |
|
|
|
Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf |
|
""" |
|
def __init__(self, *, num_quantizers, **kwargs): |
|
super().__init__() |
|
self.layers = nn.ModuleList( |
|
[VectorQuantization(**kwargs) for _ in range(num_quantizers)] |
|
) |
|
|
|
def forward(self, x, n_q: tp.Optional[int] = None): |
|
quantized_out = 0.0 |
|
residual = x |
|
|
|
all_losses = [] |
|
all_indices = [] |
|
|
|
n_q = n_q or len(self.layers) |
|
|
|
for i, layer in enumerate(self.layers[:n_q]): |
|
quantized, indices, loss = layer(residual) |
|
residual = residual - quantized |
|
quantized_out = quantized_out + quantized |
|
all_indices.append(indices) |
|
all_losses.append(loss) |
|
|
|
out_losses, out_indices = map(torch.stack, (all_losses, all_indices)) |
|
return quantized_out, out_indices, out_losses |
|
|
|
def encode(self, x: torch.Tensor, n_q: tp.Optional[int] = None) -> torch.Tensor: |
|
residual = x |
|
all_indices = [] |
|
n_q = n_q or len(self.layers) |
|
for layer in self.layers[:n_q]: |
|
indices = layer.encode(residual) |
|
quantized = layer.decode(indices) |
|
residual = residual - quantized |
|
all_indices.append(indices) |
|
out_indices = torch.stack(all_indices) |
|
return out_indices |
|
|
|
def decode(self, q_indices: torch.Tensor) -> torch.Tensor: |
|
quantized_out = torch.tensor(0.0, device=q_indices.device) |
|
for i, indices in enumerate(q_indices): |
|
layer = self.layers[i] |
|
quantized = layer.decode(indices) |
|
quantized_out = quantized_out + quantized |
|
return quantized_out |
|
|