File size: 4,958 Bytes
a56642d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import numpy as np
import torch
from torch.nn.modules.utils import _pair


def mask_target(pos_proposals_list, pos_assigned_gt_inds_list, gt_masks_list,
                cfg):
    """Compute mask target for positive proposals in multiple images.

    Args:
        pos_proposals_list (list[Tensor]): Positive proposals in multiple
            images.
        pos_assigned_gt_inds_list (list[Tensor]): Assigned GT indices for each
            positive proposals.
        gt_masks_list (list[:obj:`BaseInstanceMasks`]): Ground truth masks of
            each image.
        cfg (dict): Config dict that specifies the mask size.

    Returns:
        list[Tensor]: Mask target of each image.

    Example:
        >>> import mmcv
        >>> import mmdet
        >>> from mmdet.core.mask import BitmapMasks
        >>> from mmdet.core.mask.mask_target import *
        >>> H, W = 17, 18
        >>> cfg = mmcv.Config({'mask_size': (13, 14)})
        >>> rng = np.random.RandomState(0)
        >>> # Positive proposals (tl_x, tl_y, br_x, br_y) for each image
        >>> pos_proposals_list = [
        >>>     torch.Tensor([
        >>>         [ 7.2425,  5.5929, 13.9414, 14.9541],
        >>>         [ 7.3241,  3.6170, 16.3850, 15.3102],
        >>>     ]),
        >>>     torch.Tensor([
        >>>         [ 4.8448, 6.4010, 7.0314, 9.7681],
        >>>         [ 5.9790, 2.6989, 7.4416, 4.8580],
        >>>         [ 0.0000, 0.0000, 0.1398, 9.8232],
        >>>     ]),
        >>> ]
        >>> # Corresponding class index for each proposal for each image
        >>> pos_assigned_gt_inds_list = [
        >>>     torch.LongTensor([7, 0]),
        >>>     torch.LongTensor([5, 4, 1]),
        >>> ]
        >>> # Ground truth mask for each true object for each image
        >>> gt_masks_list = [
        >>>     BitmapMasks(rng.rand(8, H, W), height=H, width=W),
        >>>     BitmapMasks(rng.rand(6, H, W), height=H, width=W),
        >>> ]
        >>> mask_targets = mask_target(
        >>>     pos_proposals_list, pos_assigned_gt_inds_list,
        >>>     gt_masks_list, cfg)
        >>> assert mask_targets.shape == (5,) + cfg['mask_size']
    """
    cfg_list = [cfg for _ in range(len(pos_proposals_list))]
    mask_targets = map(mask_target_single, pos_proposals_list,
                       pos_assigned_gt_inds_list, gt_masks_list, cfg_list)
    mask_targets = list(mask_targets)
    if len(mask_targets) > 0:
        mask_targets = torch.cat(mask_targets)
    return mask_targets


def mask_target_single(pos_proposals, pos_assigned_gt_inds, gt_masks, cfg):
    """Compute mask target for each positive proposal in the image.

    Args:
        pos_proposals (Tensor): Positive proposals.
        pos_assigned_gt_inds (Tensor): Assigned GT inds of positive proposals.
        gt_masks (:obj:`BaseInstanceMasks`): GT masks in the format of Bitmap
            or Polygon.
        cfg (dict): Config dict that indicate the mask size.

    Returns:
        Tensor: Mask target of each positive proposals in the image.

    Example:
        >>> import mmcv
        >>> import mmdet
        >>> from mmdet.core.mask import BitmapMasks
        >>> from mmdet.core.mask.mask_target import *  # NOQA
        >>> H, W = 32, 32
        >>> cfg = mmcv.Config({'mask_size': (7, 11)})
        >>> rng = np.random.RandomState(0)
        >>> # Masks for each ground truth box (relative to the image)
        >>> gt_masks_data = rng.rand(3, H, W)
        >>> gt_masks = BitmapMasks(gt_masks_data, height=H, width=W)
        >>> # Predicted positive boxes in one image
        >>> pos_proposals = torch.FloatTensor([
        >>>     [ 16.2,   5.5, 19.9, 20.9],
        >>>     [ 17.3,  13.6, 19.3, 19.3],
        >>>     [ 14.8,  16.4, 17.0, 23.7],
        >>>     [  0.0,   0.0, 16.0, 16.0],
        >>>     [  4.0,   0.0, 20.0, 16.0],
        >>> ])
        >>> # For each predicted proposal, its assignment to a gt mask
        >>> pos_assigned_gt_inds = torch.LongTensor([0, 1, 2, 1, 1])
        >>> mask_targets = mask_target_single(
        >>>     pos_proposals, pos_assigned_gt_inds, gt_masks, cfg)
        >>> assert mask_targets.shape == (5,) + cfg['mask_size']
    """
    device = pos_proposals.device
    mask_size = _pair(cfg.mask_size)
    num_pos = pos_proposals.size(0)
    if num_pos > 0:
        proposals_np = pos_proposals.cpu().numpy()
        maxh, maxw = gt_masks.height, gt_masks.width
        proposals_np[:, [0, 2]] = np.clip(proposals_np[:, [0, 2]], 0, maxw)
        proposals_np[:, [1, 3]] = np.clip(proposals_np[:, [1, 3]], 0, maxh)
        pos_assigned_gt_inds = pos_assigned_gt_inds.cpu().numpy()

        mask_targets = gt_masks.crop_and_resize(
            proposals_np, mask_size, device=device,
            inds=pos_assigned_gt_inds).to_ndarray()

        mask_targets = torch.from_numpy(mask_targets).float().to(device)
    else:
        mask_targets = pos_proposals.new_zeros((0, ) + mask_size)

    return mask_targets