Spaces:
Runtime error
Runtime error
File size: 11,800 Bytes
a56642d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
import matplotlib.pyplot as plt
import mmcv
import numpy as np
import pycocotools.mask as mask_util
from matplotlib.collections import PatchCollection
from matplotlib.patches import Polygon
import cv2
from ..utils import mask2ndarray
EPS = 1e-2
def color_val_matplotlib(color):
"""Convert various input in BGR order to normalized RGB matplotlib color
tuples,
Args:
color (:obj:`Color`/str/tuple/int/ndarray): Color inputs
Returns:
tuple[float]: A tuple of 3 normalized floats indicating RGB channels.
"""
color = mmcv.color_val(color)
color = [color / 255 for color in color[::-1]]
return tuple(color)
def imshow_det_bboxes(img,
bboxes,
labels,
segms=None,
class_names=None,
score_thr=0,
bbox_color='green',
text_color='green',
mask_color=None,
thickness=2,
font_size=13,
win_name='',
show=True,
wait_time=0,
out_file=None):
"""Draw bboxes and class labels (with scores) on an image.
Args:
img (str or ndarray): The image to be displayed.
bboxes (ndarray): Bounding boxes (with scores), shaped (n, 4) or
(n, 5).
labels (ndarray): Labels of bboxes.
segms (ndarray or None): Masks, shaped (n,h,w) or None
class_names (list[str]): Names of each classes.
score_thr (float): Minimum score of bboxes to be shown. Default: 0
bbox_color (str or tuple(int) or :obj:`Color`):Color of bbox lines.
The tuple of color should be in BGR order. Default: 'green'
text_color (str or tuple(int) or :obj:`Color`):Color of texts.
The tuple of color should be in BGR order. Default: 'green'
mask_color (str or tuple(int) or :obj:`Color`, optional):
Color of masks. The tuple of color should be in BGR order.
Default: None
thickness (int): Thickness of lines. Default: 2
font_size (int): Font size of texts. Default: 13
show (bool): Whether to show the image. Default: True
win_name (str): The window name. Default: ''
wait_time (float): Value of waitKey param. Default: 0.
out_file (str, optional): The filename to write the image.
Default: None
Returns:
ndarray: The image with bboxes drawn on it.
"""
assert bboxes.ndim == 2, \
f' bboxes ndim should be 2, but its ndim is {bboxes.ndim}.'
assert labels.ndim == 1, \
f' labels ndim should be 1, but its ndim is {labels.ndim}.'
assert bboxes.shape[0] == labels.shape[0], \
'bboxes.shape[0] and labels.shape[0] should have the same length.'
assert bboxes.shape[1] == 4 or bboxes.shape[1] == 5, \
f' bboxes.shape[1] should be 4 or 5, but its {bboxes.shape[1]}.'
img = mmcv.imread(img).astype(np.uint8)
if score_thr > 0:
assert bboxes.shape[1] == 5
scores = bboxes[:, -1]
inds = scores > score_thr
bboxes = bboxes[inds, :]
labels = labels[inds]
if segms is not None:
if len(inds) != len(segms):
inds = np.repeat(a = inds, repeats = 2)
segms = segms[inds, ...]
mask_colors = []
if labels.shape[0] > 0:
if mask_color is None:
# random color
np.random.seed(46)
mask_colors = [
np.random.randint(0, 256, (1, 3), dtype=np.uint8)
#for _ in range(max(labels) + 2)
for _ in range(100)
]
#print(mask_colors)
#asas
else:
# specify color
mask_colors = [
np.array(mmcv.color_val(mask_color)[::-1], dtype=np.uint8)
] * (
max(labels) + 1)
bbox_color = color_val_matplotlib(bbox_color)
text_color = color_val_matplotlib(text_color)
img = mmcv.bgr2rgb(img)
width, height = img.shape[1], img.shape[0]
img = np.ascontiguousarray(img)
fig = plt.figure(win_name, frameon=False)
plt.title(win_name)
canvas = fig.canvas
dpi = fig.get_dpi()
# add a small EPS to avoid precision lost due to matplotlib's truncation
# (https://github.com/matplotlib/matplotlib/issues/15363)
fig.set_size_inches((width + EPS) / dpi, (height + EPS) / dpi)
# remove white edges by set subplot margin
plt.subplots_adjust(left=0, right=1, bottom=0, top=1)
ax = plt.gca()
ax.axis('off')
polygons = []
color = []
img_bound =img*0
#img=img*0
for i, (bbox, label) in enumerate(zip(bboxes, labels)):
bbox_int = bbox.astype(np.int32)
poly = [[bbox_int[0], bbox_int[1]], [bbox_int[0], bbox_int[3]],
[bbox_int[2], bbox_int[3]], [bbox_int[2], bbox_int[1]]]
np_poly = np.array(poly).reshape((4, 2))
polygons.append(Polygon(np_poly))
color.append(bbox_color)
label_text = class_names[
label] if class_names is not None else f'class {label}'
if len(bbox) > 4:
label_text += f'|{bbox[-1]:.02f}'
'''
ax.text(
bbox_int[0],
bbox_int[1],
f'{label_text}',
bbox={
'facecolor': 'black',
'alpha': 0.8,
'pad': 0.7,
'edgecolor': 'none'
},
color=text_color,
fontsize=font_size,
verticalalignment='top',
horizontalalignment='left')
'''
if segms is not None:
for ll in range(1):
color_mask = mask_colors[np.random.randint(0, 99)]
mask = segms[len(labels)*ll+i].astype(bool)
show_border = True
img[mask] = img[mask] * 0.5 + color_mask * 0.5
if show_border:
contours,_ = cv2.findContours(mask.copy().astype('uint8'), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE)
border_thick = min(int(4*(max(bbox_int[2]-bbox_int[0],bbox_int[3]-bbox_int[1])/300))+1,6)
cv2.drawContours(img, contours, -1, (int(color_mask[0][0]),int(color_mask[0][1]),int(color_mask[0][2])), border_thick)
#img = cv2.addWeighted(img,1.0,img_bound,1.0,0)
#img[img_bound>0] = img_bound
plt.imshow(img)
p = PatchCollection(
polygons, facecolor='none', edgecolors=color, linewidths=thickness)
#ax.add_collection(p)
stream, _ = canvas.print_to_buffer()
buffer = np.frombuffer(stream, dtype='uint8')
img_rgba = buffer.reshape(height, width, 4)
rgb, alpha = np.split(img_rgba, [3], axis=2)
img = rgb.astype('uint8')
img = mmcv.rgb2bgr(img)
if show:
# We do not use cv2 for display because in some cases, opencv will
# conflict with Qt, it will output a warning: Current thread
# is not the object's thread. You can refer to
# https://github.com/opencv/opencv-python/issues/46 for details
if wait_time == 0:
plt.show()
else:
plt.show(block=False)
plt.pause(wait_time)
if out_file is not None:
mmcv.imwrite(img, out_file)
plt.close()
return img
def imshow_gt_det_bboxes(img,
annotation,
result,
class_names=None,
score_thr=0,
gt_bbox_color=(255, 102, 61),
gt_text_color=(255, 102, 61),
gt_mask_color=(255, 102, 61),
det_bbox_color=(72, 101, 241),
det_text_color=(72, 101, 241),
det_mask_color=(72, 101, 241),
thickness=2,
font_size=13,
win_name='',
show=True,
wait_time=0,
out_file=None):
"""General visualization GT and result function.
Args:
img (str or ndarray): The image to be displayed.)
annotation (dict): Ground truth annotations where contain keys of
'gt_bboxes' and 'gt_labels' or 'gt_masks'
result (tuple[list] or list): The detection result, can be either
(bbox, segm) or just bbox.
class_names (list[str]): Names of each classes.
score_thr (float): Minimum score of bboxes to be shown. Default: 0
gt_bbox_color (str or tuple(int) or :obj:`Color`):Color of bbox lines.
The tuple of color should be in BGR order. Default: (255, 102, 61)
gt_text_color (str or tuple(int) or :obj:`Color`):Color of texts.
The tuple of color should be in BGR order. Default: (255, 102, 61)
gt_mask_color (str or tuple(int) or :obj:`Color`, optional):
Color of masks. The tuple of color should be in BGR order.
Default: (255, 102, 61)
det_bbox_color (str or tuple(int) or :obj:`Color`):Color of bbox lines.
The tuple of color should be in BGR order. Default: (72, 101, 241)
det_text_color (str or tuple(int) or :obj:`Color`):Color of texts.
The tuple of color should be in BGR order. Default: (72, 101, 241)
det_mask_color (str or tuple(int) or :obj:`Color`, optional):
Color of masks. The tuple of color should be in BGR order.
Default: (72, 101, 241)
thickness (int): Thickness of lines. Default: 2
font_size (int): Font size of texts. Default: 13
win_name (str): The window name. Default: ''
show (bool): Whether to show the image. Default: True
wait_time (float): Value of waitKey param. Default: 0.
out_file (str, optional): The filename to write the image.
Default: None
Returns:
ndarray: The image with bboxes or masks drawn on it.
"""
assert 'gt_bboxes' in annotation
assert 'gt_labels' in annotation
assert isinstance(
result,
(tuple, list)), f'Expected tuple or list, but get {type(result)}'
gt_masks = annotation.get('gt_masks', None)
if gt_masks is not None:
gt_masks = mask2ndarray(gt_masks)
img = mmcv.imread(img)
img = imshow_det_bboxes(
img,
annotation['gt_bboxes'],
annotation['gt_labels'],
gt_masks,
class_names=class_names,
bbox_color=gt_bbox_color,
text_color=gt_text_color,
mask_color=gt_mask_color,
thickness=thickness,
font_size=font_size,
win_name=win_name,
show=False)
if isinstance(result, tuple):
bbox_result, segm_result = result
if isinstance(segm_result, tuple):
segm_result = segm_result[0] # ms rcnn
else:
bbox_result, segm_result = result, None
bboxes = np.vstack(bbox_result)
labels = [
np.full(bbox.shape[0], i, dtype=np.int32)
for i, bbox in enumerate(bbox_result)
]
labels = np.concatenate(labels)
segms = None
if segm_result is not None and len(labels) > 0: # non empty
segms = mmcv.concat_list(segm_result)
segms = mask_util.decode(segms)
segms = segms.transpose(2, 0, 1)
img = imshow_det_bboxes(
img,
bboxes,
labels,
segms=segms,
class_names=class_names,
score_thr=score_thr,
bbox_color=det_bbox_color,
text_color=det_text_color,
mask_color=det_mask_color,
thickness=thickness,
font_size=font_size,
win_name=win_name,
show=show,
wait_time=wait_time,
out_file=out_file)
return img
|