Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
import gradio as gr | |
from infer import detections | |
''' | |
import os | |
os.system("mkdir data") | |
os.system("mkdir data/models") | |
os.system("wget https://www.cs.cmu.edu/~walt/models/walt_people.pth -O data/models/walt_people.pth") | |
os.system("wget https://www.cs.cmu.edu/~walt/models/walt_vehicle.pth -O data/models/walt_vehicle.pth") | |
''' | |
def walt_demo(input_img, confidence_threshold): | |
#detect_people = detections('configs/walt/walt_people.py', 'cuda:0', model_path='data/models/walt_people.pth') | |
if torch.cuda.is_available() == False: | |
device='cpu' | |
else: | |
device='cuda:0' | |
#detect_people = detections('configs/walt/walt_people.py', device, model_path='data/models/walt_people.pth') | |
detect = detections('configs/walt/walt_vehicle.py', device, model_path='data/models/walt_vehicle.pth', threshold=confidence_threshold) | |
count = 0 | |
#img = detect_people.run_on_image(input_img) | |
output_img = detect.run_on_image(input_img) | |
#try: | |
#except: | |
# print("detecting on image failed") | |
return output_img | |
description = """ | |
WALT Demo on WALT dataset. After watching and automatically learning for several days, this approach shows significant performance improvement in detecting and segmenting occluded people and vehicles, over human-supervised amodal approaches</b>. | |
<center> | |
<a href="https://www.cs.cmu.edu/~walt/"> | |
<img style="display:inline" alt="Project page" src="https://img.shields.io/badge/Project%20Page-WALT-green"> | |
</a> | |
<a href="https://www.cs.cmu.edu/~walt/pdf/walt.pdf"><img style="display:inline" src="https://img.shields.io/badge/Paper-Pdf-red"></a> | |
<a href="https://github.com/dineshreddy91/WALT"><img style="display:inline" src="https://img.shields.io/github/stars/dineshreddy91/WALT?style=social"></a> | |
</center> | |
""" | |
title = "WALT:Watch And Learn 2D Amodal Representation using Time-lapse Imagery" | |
article=""" | |
<center> | |
<img src='https://visitor-badge.glitch.me/badge?page_id=anhquancao.MonoScene&left_color=darkmagenta&right_color=purple' alt='visitor badge'> | |
</center> | |
""" | |
examples = [ | |
['demo/images/img_1.jpg',0.8], | |
['demo/images/img_2.jpg',0.8], | |
['demo/images/img_4.png',0.85], | |
] | |
''' | |
import cv2 | |
filename='demo/images/img_1.jpg' | |
img=cv2.imread(filename) | |
img=walt_demo(img) | |
cv2.imwrite(filename.replace('/images/','/results/'),img) | |
cv2.imwrite('check.png',img) | |
''' | |
confidence_threshold = gr.Slider(minimum=0.3, | |
maximum=1.0, | |
step=0.01, | |
value=1.0, | |
label="Amodal Detection Confidence Threshold") | |
inputs = [gr.Image(), confidence_threshold] | |
demo = gr.Interface(walt_demo, | |
outputs="image", | |
inputs=inputs, | |
article=article, | |
title=title, | |
enable_queue=True, | |
examples=examples, | |
description=description) | |
#demo.launch(server_name="0.0.0.0", server_port=7000) | |
demo.launch() | |