WALT / mmdet /core /utils /misc.py
3v324v23's picture
update demo
a56642d
from functools import partial
import numpy as np
import torch
from six.moves import map, zip
from ..mask.structures import BitmapMasks, PolygonMasks
def multi_apply(func, *args, **kwargs):
"""Apply function to a list of arguments.
Note:
This function applies the ``func`` to multiple inputs and
map the multiple outputs of the ``func`` into different
list. Each list contains the same type of outputs corresponding
to different inputs.
Args:
func (Function): A function that will be applied to a list of
arguments
Returns:
tuple(list): A tuple containing multiple list, each list contains \
a kind of returned results by the function
"""
pfunc = partial(func, **kwargs) if kwargs else func
map_results = map(pfunc, *args)
return tuple(map(list, zip(*map_results)))
def unmap(data, count, inds, fill=0):
"""Unmap a subset of item (data) back to the original set of items (of size
count)"""
if data.dim() == 1:
ret = data.new_full((count, ), fill)
ret[inds.type(torch.bool)] = data
else:
new_size = (count, ) + data.size()[1:]
ret = data.new_full(new_size, fill)
ret[inds.type(torch.bool), :] = data
return ret
def mask2ndarray(mask):
"""Convert Mask to ndarray..
Args:
mask (:obj:`BitmapMasks` or :obj:`PolygonMasks` or
torch.Tensor or np.ndarray): The mask to be converted.
Returns:
np.ndarray: Ndarray mask of shape (n, h, w) that has been converted
"""
if isinstance(mask, (BitmapMasks, PolygonMasks)):
mask = mask.to_ndarray()
elif isinstance(mask, torch.Tensor):
mask = mask.detach().cpu().numpy()
elif not isinstance(mask, np.ndarray):
raise TypeError(f'Unsupported {type(mask)} data type')
return mask