novafulldemo / app.py
dineth554's picture
Update app.py
a0c1e94 verified
raw
history blame
7.54 kB
import os
# Install necessary libraries
os.system('pip install streamlit torch onnxruntime transformers sentencepiece pydub soxr edge-tts requests beautifulsoup4')
import streamlit as st
import torch
import sentencepiece as spm
import onnxruntime as ort
from pydub import AudioSegment
import numpy as np
import soxr
import edge_tts
import requests
from bs4 import BeautifulSoup
import urllib
import random
from huggingface_hub import hf_hub_download, InferenceClient
import tempfile
# Install necessary libraries
os.system('pip install streamlit torch onnxruntime transformers sentencepiece pydub soxr edge-tts requests beautifulsoup4')
# Load models
model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
sample_rate = 16000
preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx"))
encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))
client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
system_instructions1 = "<s>[SYSTEM] Answer as Real OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
_useragent_list = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36',
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0'
]
def get_useragent():
return random.choice(_useragent_list)
def extract_text_from_webpage(html_content):
soup = BeautifulSoup(html_content, "html.parser")
for tag in soup(["script", "style", "header", "footer", "nav"]):
tag.extract()
visible_text = soup.get_text(strip=True)
return visible_text
def search(term, num_results=1):
escaped_term = urllib.parse.quote_plus(term)
start = 0
all_results = []
while start < num_results:
resp = requests.get(
url="https://www.google.com/search",
headers={"User-Agent": get_useragent()},
params={
"q": term,
"num": num_results - start,
"hl": "en",
"start": start,
"safe": "active",
},
timeout=5,
)
resp.raise_for_status()
soup = BeautifulSoup(resp.text, "html.parser")
result_block = soup.find_all("div", attrs={"class": "g"})
if not result_block:
start += 1
continue
for result in result_block:
link = result.find("a", href=True)
if link:
link = link["href"]
try:
webpage = requests.get(link, headers={"User-Agent": get_useragent()})
webpage.raise_for_status()
visible_text = extract_text_from_webpage(webpage.text)
all_results.append({"link": link, "text": visible_text})
except requests.exceptions.RequestException as e:
all_results.append({"link": link, "text": None})
else:
all_results.append({"link": None, "text": None})
start += len(result_block)
return all_results
def resample(audio_fp32, sr):
return soxr.resample(audio_fp32, sr, sample_rate)
def to_float32(audio_buffer):
return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32)
def transcribe(audio_path):
audio_file = AudioSegment.from_file(audio_path)
sr = audio_file.frame_rate
audio_buffer = np.array(audio_file.get_array_of_samples())
audio_fp32 = to_float32(audio_buffer)
audio_16k = resample(audio_fp32, sr)
input_signal = torch.tensor(audio_16k).unsqueeze(0)
length = torch.tensor(len(audio_16k)).unsqueeze(0)
processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length)
logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0]
blank_id = tokenizer.vocab_size()
decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id]
text = tokenizer.decode_ids(decoded_prediction)
return text
def model(text, web_search):
if web_search:
web_results = search(text)
web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
formatted_prompt = system_instructions1 + text + "[WEB]" + str(web2) + "[OpenGPT 4o]"
stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
return "".join([response.token.text for response in stream if response.token.text != "</s>"])
else:
formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]"
stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
return "".join([response.token.text for response in stream if response.token.text != "</s>"])
async def respond(audio, web_search):
user = transcribe(audio)
reply = model(user, web_search)
communicate = edge_tts.Communicate(reply)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path
# Streamlit interface
st.title("OpenGPT 4o DEMO")
# Chat input interface
st.subheader("💬 SuperChat")
prompt = st.text_input("Say something")
if prompt:
web_search = st.checkbox("Web Search", value=True)
response = model(prompt, web_search)
st.write(response)
# Audio input interface
st.subheader("🗣️ Voice Chat")
audio_file = st.file_uploader("Upload an audio file", type=["wav", "mp3"])
if audio_file:
web_search = st.checkbox("Web Search", value=False)
with st.spinner("Transcribing and generating response..."):
audio_path = audio_file.name
with open(audio_path, "wb") as f:
f.write(audio_file.getbuffer())
response_audio = await respond(audio_path, web_search)
st.audio(response_audio)
```
### Explanation:
1. **Library Installation**: Uses `os.system()` to install the required libraries at the beginning of the script.
2. **Streamlit Application**: The rest of the script remains the same as previously explained, including the Streamlit UI and the functionalities.
### How to Run:
Save this script as `app.py` and run it using the following command:
```bash
streamlit run app.py