Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
# Install necessary libraries | |
os.system('pip install streamlit torch onnxruntime transformers sentencepiece pydub soxr edge-tts requests beautifulsoup4') | |
# Import modules from other files | |
from chatbot import chatbot, model_inference, BOT_AVATAR, EXAMPLES, model_selector, decoding_strategy, temperature, max_new_tokens, repetition_penalty, top_p | |
from live_chat import videochat | |
# Define Gradio theme | |
theme = gr.themes.Soft( | |
primary_hue="blue", | |
secondary_hue="orange", | |
neutral_hue="gray", | |
font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'] | |
).set( | |
body_background_fill_dark="#111111", | |
block_background_fill_dark="#111111", | |
block_border_width="1px", | |
block_title_background_fill_dark="#1e1c26", | |
input_background_fill_dark="#292733", | |
button_secondary_background_fill_dark="#24212b", | |
border_color_primary_dark="#343140", | |
background_fill_secondary_dark="#111111", | |
color_accent_soft_dark="transparent" | |
) | |
import edge_tts | |
import asyncio | |
import tempfile | |
import numpy as np | |
import soxr | |
from pydub import AudioSegment | |
import torch | |
import sentencepiece as spm | |
import onnxruntime as ort | |
from huggingface_hub import hf_hub_download, InferenceClient | |
import requests | |
from bs4 import BeautifulSoup | |
import urllib | |
import random | |
# List of user agents to choose from for requests | |
_useragent_list = [ | |
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0', | |
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36', | |
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36', | |
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36', | |
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36', | |
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62', | |
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0' | |
] | |
def get_useragent(): | |
"""Returns a random user agent from the list.""" | |
return random.choice(_useragent_list) | |
def extract_text_from_webpage(html_content): | |
"""Extracts visible text from HTML content using BeautifulSoup.""" | |
soup = BeautifulSoup(html_content, "html.parser") | |
# Remove unwanted tags | |
for tag in soup(["script", "style", "header", "footer", "nav"]): | |
tag.extract() | |
# Get the remaining visible text | |
visible_text = soup.get_text(strip=True) | |
return visible_text | |
def search(term, num_results=1, lang="en", advanced=True, sleep_interval=0, timeout=5, safe="active", ssl_verify=None): | |
"""Performs a Google search and returns the results.""" | |
escaped_term = urllib.parse.quote_plus(term) | |
start = 0 | |
all_results = [] | |
# Fetch results in batches | |
while start < num_results: | |
resp = requests.get( | |
url="https://www.google.com/search", | |
headers={"User-Agent": get_useragent()}, # Set random user agent | |
params={ | |
"q": term, | |
"num": num_results - start, # Number of results to fetch in this batch | |
"hl": lang, | |
"start": start, | |
"safe": safe, | |
}, | |
timeout=timeout, | |
verify=ssl_verify, | |
) | |
resp.raise_for_status() # Raise an exception if request fails | |
soup = BeautifulSoup(resp.text, "html.parser") | |
result_block = soup.find_all("div", attrs={"class": "g"}) | |
# If no results, continue to the next batch | |
if not result_block: | |
start += 1 | |
continue | |
# Extract link and text from each result | |
for result in result_block: | |
link = result.find("a", href=True) | |
if link: | |
link = link["href"] | |
try: | |
# Fetch webpage content | |
webpage = requests.get(link, headers={"User-Agent": get_useragent()}) | |
webpage.raise_for_status() | |
# Extract visible text from webpage | |
visible_text = extract_text_from_webpage(webpage.text) | |
all_results.append({"link": link, "text": visible_text}) | |
except requests.exceptions.RequestException as e: | |
# Handle errors fetching or processing webpage | |
print(f"Error fetching or processing {link}: {e}") | |
all_results.append({"link": link, "text": None}) | |
else: | |
all_results.append({"link": None, "text": None}) | |
start += len(result_block) # Update starting index for next batch | |
return all_results | |
# Speech Recognition Model Configuration | |
model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25" | |
sample_rate = 16000 | |
# Download preprocessor, encoder and tokenizer | |
preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx")) | |
encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx")) | |
tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx")) | |
# Mistral Model Configuration | |
client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") | |
system_instructions1 = "<s>[SYSTEM] Answer as Real OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]" | |
def resample(audio_fp32, sr): | |
return soxr.resample(audio_fp32, sr, sample_rate) | |
def to_float32(audio_buffer): | |
return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32) | |
def transcribe(audio_path): | |
audio_file = AudioSegment.from_file(audio_path) | |
sr = audio_file.frame_rate | |
audio_buffer = np.array(audio_file.get_array_of_samples()) | |
audio_fp32 = to_float32(audio_buffer) | |
audio_16k = resample(audio_fp32, sr) | |
input_signal = torch.tensor(audio_16k).unsqueeze(0) | |
length = torch.tensor(len(audio_16k)).unsqueeze(0) | |
processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length) | |
logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0] | |
blank_id = tokenizer.vocab_size() | |
decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id] | |
text = tokenizer.decode_ids(decoded_prediction) | |
return text | |
def model(text, web_search): | |
if web_search is True: | |
"""Performs a web search, feeds the results to a language model, and returns the answer.""" | |
web_results = search(text) | |
web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results]) | |
formatted_prompt = system_instructions1 + text + "[WEB]" + str(web2) + "[OpenGPT 4o]" | |
stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False) | |
return "".join([response.token.text for response in stream if response.token.text != "</s>"]) | |
else: | |
formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]" | |
stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False) | |
return "".join([response.token.text for response in stream if response.token.text != "</s>"]) | |
async def respond(audio, web_search): | |
user = transcribe(audio) | |
reply = model(user, web_search) | |
communicate = edge_tts.Communicate(reply) | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: | |
tmp_path = tmp_file.name | |
await communicate.save(tmp_path) | |
return tmp_path | |
with gr.Blocks() as voice: | |
gr.Markdown("## Temproraly Not Working (Update in Progress)") | |
with gr.Row(): | |
web_search = gr.Checkbox(label="Web Search", value=False) | |
input = gr.Audio(label="User Input", sources="microphone", type="filepath") | |
output = gr.Audio(label="AI", autoplay=True) | |
gr.Interface(fn=respond, inputs=[input, web_search], outputs=[output], live=True) | |
# Create Gradio blocks for different functionalities | |
# Chat interface block | |
with gr.Blocks( | |
fill_height=True, | |
css=""".gradio-container .avatar-container {height: 40px width: 40px !important;} #duplicate-button {margin: auto; color: white; background: #f1a139; border-radius: 100vh; margin-top: 2px; margin-bottom: 2px;}""", | |
) as chat: | |
gr.Markdown("### Image Chat, Image Generation and Normal Chat") | |
with gr.Row(elem_id="model_selector_row"): | |
# model_selector defined in chatbot.py | |
pass | |
# decoding_strategy, temperature, top_p defined in chatbot.py | |
decoding_strategy.change( | |
fn=lambda selection: gr.Slider( | |
visible=( | |
selection | |
in [ | |
"contrastive_sampling", | |
"beam_sampling", | |
"Top P Sampling", | |
"sampling_top_k", | |
] | |
) | |
), | |
inputs=decoding_strategy, | |
outputs=temperature, | |
) | |
decoding_strategy.change( | |
fn=lambda selection: gr.Slider(visible=(selection in ["Top P Sampling"])), | |
inputs=decoding_strategy, | |
outputs=top_p, | |
) | |
gr.ChatInterface( | |
fn=model_inference, | |
chatbot=chatbot, | |
examples=EXAMPLES, | |
multimodal=True, | |
cache_examples=False, | |
additional_inputs=[ | |
model_selector, | |
decoding_strategy, | |
temperature, | |
max_new_tokens, | |
repetition_penalty, | |
top_p, | |
gr.Checkbox(label="Web Search", value=True), | |
], | |
) | |
# Live chat block | |
with gr.Blocks() as livechat: | |
gr.Interface( | |
fn=videochat, | |
inputs=[gr.Image(type="pil",sources="webcam", label="Upload Image"), gr.Textbox(label="Prompt", value="what he is doing")], | |
outputs=gr.Textbox(label="Answer") | |
) | |
# Other blocks (instant, dalle, playground, image, instant2, video) | |
with gr.Blocks() as instant: | |
gr.HTML("<iframe src='https://kingnish-sdxl-flash.hf.space' width='100%' height='2000px' style='border-radius: 8px;'></iframe>") | |
with gr.Blocks() as dalle: | |
gr.HTML("<iframe src='https://kingnish-image-gen-pro.hf.space' width='100%' height='2000px' style='border-radius: 8px;'></iframe>") | |
with gr.Blocks() as playground: | |
gr.HTML("<iframe src='https://fluently-fluently-playground.hf.space' width='100%' height='2000px' style='border-radius: 8px;'></iframe>") | |
with gr.Blocks() as image: | |
gr.Markdown("""### More models are coming""") | |
gr.TabbedInterface([ instant, dalle, playground], ['InstantπΌοΈ','PowerfulπΌοΈ', 'PlaygroundπΌ']) | |
with gr.Blocks() as instant2: | |
gr.HTML("<iframe src='https://kingnish-instant-video.hf.space' width='100%' height='3000px' style='border-radius: 8px;'></iframe>") | |
with gr.Blocks() as video: | |
gr.Markdown("""More Models are coming""") | |
gr.TabbedInterface([ instant2], ['Instantπ₯']) | |
# Main application block | |
with gr.Blocks(theme=theme, title="OpenGPT 4o DEMO") as demo: | |
gr.Markdown("# OpenGPT 4o") | |
gr.TabbedInterface([chat, voice, livechat, image, video], ['π¬ SuperChat']) | |
demo.queue(max_size=300) | |
demo.launch() |