dineth554 commited on
Commit
349f0cc
β€’
1 Parent(s): 07df295

Upload 5 files

Browse files
Files changed (5) hide show
  1. app (2).py +273 -0
  2. chatbot.py +507 -0
  3. live_chat.py +31 -0
  4. requirements.txt +15 -0
  5. voice_chat.py +155 -0
app (2).py ADDED
@@ -0,0 +1,273 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ # Import modules from other files
4
+ from chatbot import chatbot, model_inference, BOT_AVATAR, EXAMPLES, model_selector, decoding_strategy, temperature, max_new_tokens, repetition_penalty, top_p
5
+ from live_chat import videochat
6
+
7
+ # Define Gradio theme
8
+ theme = gr.themes.Soft(
9
+ primary_hue="blue",
10
+ secondary_hue="orange",
11
+ neutral_hue="gray",
12
+ font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif']
13
+ ).set(
14
+ body_background_fill_dark="#111111",
15
+ block_background_fill_dark="#111111",
16
+ block_border_width="1px",
17
+ block_title_background_fill_dark="#1e1c26",
18
+ input_background_fill_dark="#292733",
19
+ button_secondary_background_fill_dark="#24212b",
20
+ border_color_primary_dark="#343140",
21
+ background_fill_secondary_dark="#111111",
22
+ color_accent_soft_dark="transparent"
23
+ )
24
+
25
+ import edge_tts
26
+ import asyncio
27
+ import tempfile
28
+ import numpy as np
29
+ import soxr
30
+ from pydub import AudioSegment
31
+ import torch
32
+ import sentencepiece as spm
33
+ import onnxruntime as ort
34
+ from huggingface_hub import hf_hub_download, InferenceClient
35
+ import requests
36
+ from bs4 import BeautifulSoup
37
+ import urllib
38
+ import random
39
+
40
+ # List of user agents to choose from for requests
41
+ _useragent_list = [
42
+ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0',
43
+ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
44
+ 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
45
+ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36',
46
+ 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
47
+ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62',
48
+ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0'
49
+ ]
50
+
51
+ def get_useragent():
52
+ """Returns a random user agent from the list."""
53
+ return random.choice(_useragent_list)
54
+
55
+ def extract_text_from_webpage(html_content):
56
+ """Extracts visible text from HTML content using BeautifulSoup."""
57
+ soup = BeautifulSoup(html_content, "html.parser")
58
+ # Remove unwanted tags
59
+ for tag in soup(["script", "style", "header", "footer", "nav"]):
60
+ tag.extract()
61
+ # Get the remaining visible text
62
+ visible_text = soup.get_text(strip=True)
63
+ return visible_text
64
+
65
+ def search(term, num_results=1, lang="en", advanced=True, sleep_interval=0, timeout=5, safe="active", ssl_verify=None):
66
+ """Performs a Google search and returns the results."""
67
+ escaped_term = urllib.parse.quote_plus(term)
68
+ start = 0
69
+ all_results = []
70
+
71
+ # Fetch results in batches
72
+ while start < num_results:
73
+ resp = requests.get(
74
+ url="https://www.google.com/search",
75
+ headers={"User-Agent": get_useragent()}, # Set random user agent
76
+ params={
77
+ "q": term,
78
+ "num": num_results - start, # Number of results to fetch in this batch
79
+ "hl": lang,
80
+ "start": start,
81
+ "safe": safe,
82
+ },
83
+ timeout=timeout,
84
+ verify=ssl_verify,
85
+ )
86
+ resp.raise_for_status() # Raise an exception if request fails
87
+
88
+ soup = BeautifulSoup(resp.text, "html.parser")
89
+ result_block = soup.find_all("div", attrs={"class": "g"})
90
+
91
+ # If no results, continue to the next batch
92
+ if not result_block:
93
+ start += 1
94
+ continue
95
+
96
+ # Extract link and text from each result
97
+ for result in result_block:
98
+ link = result.find("a", href=True)
99
+ if link:
100
+ link = link["href"]
101
+ try:
102
+ # Fetch webpage content
103
+ webpage = requests.get(link, headers={"User-Agent": get_useragent()})
104
+ webpage.raise_for_status()
105
+ # Extract visible text from webpage
106
+ visible_text = extract_text_from_webpage(webpage.text)
107
+ all_results.append({"link": link, "text": visible_text})
108
+ except requests.exceptions.RequestException as e:
109
+ # Handle errors fetching or processing webpage
110
+ print(f"Error fetching or processing {link}: {e}")
111
+ all_results.append({"link": link, "text": None})
112
+ else:
113
+ all_results.append({"link": None, "text": None})
114
+
115
+ start += len(result_block) # Update starting index for next batch
116
+
117
+ return all_results
118
+
119
+ # Speech Recognition Model Configuration
120
+ model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
121
+ sample_rate = 16000
122
+
123
+ # Download preprocessor, encoder and tokenizer
124
+ preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx"))
125
+ encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
126
+ tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))
127
+
128
+ # Mistral Model Configuration
129
+ client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
130
+ system_instructions1 = "<s>[SYSTEM] Answer as Real OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
131
+
132
+ def resample(audio_fp32, sr):
133
+ return soxr.resample(audio_fp32, sr, sample_rate)
134
+
135
+ def to_float32(audio_buffer):
136
+ return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32)
137
+
138
+ def transcribe(audio_path):
139
+ audio_file = AudioSegment.from_file(audio_path)
140
+ sr = audio_file.frame_rate
141
+ audio_buffer = np.array(audio_file.get_array_of_samples())
142
+
143
+ audio_fp32 = to_float32(audio_buffer)
144
+ audio_16k = resample(audio_fp32, sr)
145
+
146
+ input_signal = torch.tensor(audio_16k).unsqueeze(0)
147
+ length = torch.tensor(len(audio_16k)).unsqueeze(0)
148
+ processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length)
149
+
150
+ logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0]
151
+
152
+ blank_id = tokenizer.vocab_size()
153
+ decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id]
154
+ text = tokenizer.decode_ids(decoded_prediction)
155
+
156
+ return text
157
+
158
+ def model(text, web_search):
159
+ if web_search is True:
160
+ """Performs a web search, feeds the results to a language model, and returns the answer."""
161
+ web_results = search(text)
162
+ web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
163
+ formatted_prompt = system_instructions1 + text + "[WEB]" + str(web2) + "[OpenGPT 4o]"
164
+ stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
165
+ return "".join([response.token.text for response in stream if response.token.text != "</s>"])
166
+ else:
167
+ formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]"
168
+ stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
169
+ return "".join([response.token.text for response in stream if response.token.text != "</s>"])
170
+
171
+ async def respond(audio, web_search):
172
+ user = transcribe(audio)
173
+ reply = model(user, web_search)
174
+ communicate = edge_tts.Communicate(reply)
175
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
176
+ tmp_path = tmp_file.name
177
+ await communicate.save(tmp_path)
178
+ return tmp_path
179
+
180
+ with gr.Blocks() as voice:
181
+ gr.Markdown("## Temproraly Not Working (Update in Progress)")
182
+ with gr.Row():
183
+ web_search = gr.Checkbox(label="Web Search", value=False)
184
+ input = gr.Audio(label="User Input", sources="microphone", type="filepath")
185
+ output = gr.Audio(label="AI", autoplay=True)
186
+ gr.Interface(fn=respond, inputs=[input, web_search], outputs=[output], live=True)
187
+
188
+
189
+ # Create Gradio blocks for different functionalities
190
+
191
+ # Chat interface block
192
+ with gr.Blocks(
193
+ fill_height=True,
194
+ css=""".gradio-container .avatar-container {height: 40px width: 40px !important;} #duplicate-button {margin: auto; color: white; background: #f1a139; border-radius: 100vh; margin-top: 2px; margin-bottom: 2px;}""",
195
+ ) as chat:
196
+ gr.Markdown("### Image Chat, Image Generation and Normal Chat")
197
+ with gr.Row(elem_id="model_selector_row"):
198
+ # model_selector defined in chatbot.py
199
+ pass
200
+ # decoding_strategy, temperature, top_p defined in chatbot.py
201
+ decoding_strategy.change(
202
+ fn=lambda selection: gr.Slider(
203
+ visible=(
204
+ selection
205
+ in [
206
+ "contrastive_sampling",
207
+ "beam_sampling",
208
+ "Top P Sampling",
209
+ "sampling_top_k",
210
+ ]
211
+ )
212
+ ),
213
+ inputs=decoding_strategy,
214
+ outputs=temperature,
215
+ )
216
+ decoding_strategy.change(
217
+ fn=lambda selection: gr.Slider(visible=(selection in ["Top P Sampling"])),
218
+ inputs=decoding_strategy,
219
+ outputs=top_p,
220
+ )
221
+ gr.ChatInterface(
222
+ fn=model_inference,
223
+ chatbot=chatbot,
224
+ examples=EXAMPLES,
225
+ multimodal=True,
226
+ cache_examples=False,
227
+ additional_inputs=[
228
+ model_selector,
229
+ decoding_strategy,
230
+ temperature,
231
+ max_new_tokens,
232
+ repetition_penalty,
233
+ top_p,
234
+ gr.Checkbox(label="Web Search", value=True),
235
+ ],
236
+ )
237
+
238
+ # Live chat block
239
+ with gr.Blocks() as livechat:
240
+ gr.Interface(
241
+ fn=videochat,
242
+ inputs=[gr.Image(type="pil",sources="webcam", label="Upload Image"), gr.Textbox(label="Prompt", value="what he is doing")],
243
+ outputs=gr.Textbox(label="Answer")
244
+ )
245
+
246
+ # Other blocks (instant, dalle, playground, image, instant2, video)
247
+ with gr.Blocks() as instant:
248
+ gr.HTML("<iframe src='https://kingnish-sdxl-flash.hf.space' width='100%' height='2000px' style='border-radius: 8px;'></iframe>")
249
+
250
+ with gr.Blocks() as dalle:
251
+ gr.HTML("<iframe src='https://kingnish-image-gen-pro.hf.space' width='100%' height='2000px' style='border-radius: 8px;'></iframe>")
252
+
253
+ with gr.Blocks() as playground:
254
+ gr.HTML("<iframe src='https://fluently-fluently-playground.hf.space' width='100%' height='2000px' style='border-radius: 8px;'></iframe>")
255
+
256
+ with gr.Blocks() as image:
257
+ gr.Markdown("""### More models are coming""")
258
+ gr.TabbedInterface([ instant, dalle, playground], ['InstantπŸ–ΌοΈ','PowerfulπŸ–ΌοΈ', 'PlaygroundπŸ–Ό'])
259
+
260
+ with gr.Blocks() as instant2:
261
+ gr.HTML("<iframe src='https://kingnish-instant-video.hf.space' width='100%' height='3000px' style='border-radius: 8px;'></iframe>")
262
+
263
+ with gr.Blocks() as video:
264
+ gr.Markdown("""More Models are coming""")
265
+ gr.TabbedInterface([ instant2], ['InstantπŸŽ₯'])
266
+
267
+ # Main application block
268
+ with gr.Blocks(theme=theme, title="OpenGPT 4o DEMO") as demo:
269
+ gr.Markdown("# OpenGPT 4o")
270
+ gr.TabbedInterface([chat, voice, livechat, image, video], ['πŸ’¬ SuperChat','πŸ—£οΈ Voice Chat','πŸ“Έ Live Chat', 'πŸ–ΌοΈ Image Engine', 'πŸŽ₯ Video Engine'])
271
+
272
+ demo.queue(max_size=300)
273
+ demo.launch()
chatbot.py ADDED
@@ -0,0 +1,507 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import time
3
+ import copy
4
+ import urllib
5
+ import requests
6
+ import random
7
+ from threading import Thread
8
+ from typing import List, Dict, Union
9
+ import subprocess
10
+ # Install flash attention, skipping CUDA build if necessary
11
+ subprocess.run(
12
+ "pip install flash-attn --no-build-isolation",
13
+ env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
14
+ shell=True,
15
+ )
16
+ import torch
17
+ import gradio as gr
18
+ from bs4 import BeautifulSoup
19
+ import datasets
20
+ from transformers import TextIteratorStreamer
21
+ from transformers import Idefics2ForConditionalGeneration
22
+ from transformers import AutoProcessor
23
+ from huggingface_hub import InferenceClient
24
+ from PIL import Image
25
+ import spaces
26
+ from functools import lru_cache
27
+
28
+ # Set device to CUDA if available, otherwise CPU
29
+ DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
30
+ # Load pre-trained models for image-based chat
31
+ MODELS = {
32
+ "idefics2-8b-chatty": Idefics2ForConditionalGeneration.from_pretrained(
33
+ "HuggingFaceM4/idefics2-8b-chatty",
34
+ torch_dtype=torch.float16,
35
+ _attn_implementation="flash_attention_2",
36
+ ).to(DEVICE),
37
+ }
38
+
39
+ # Load pre-trained processor for image-based chat
40
+ PROCESSOR = AutoProcessor.from_pretrained(
41
+ "HuggingFaceM4/idefics2-8b",
42
+ )
43
+
44
+ # Define system prompt for the image-based chat model
45
+ SYSTEM_PROMPT = [
46
+ {
47
+ "role": "system",
48
+ "content": [
49
+ {
50
+ "type": "text",
51
+ "text": """I am OpenGPT 4o, an exceptionally capable and versatile AI assistant meticulously crafted by KingNish. Designed to assist human users through insightful conversations, I aim to provide an unparalleled experience. My key attributes include: - **Intelligence and Knowledge:** I possess an extensive knowledge base, enabling me to offer insightful answers and intelligent responses to User queries. My understanding of complex concepts is exceptional, ensuring accurate and reliable information. - **Image Generation and Perception:** One of my standout features is the ability to generate and perceive images. Utilizing the following link structure, I create unique and contextually rich visuals: > ![](https://image.pollinations.ai/prompt/{StyleofImage}%20{OptimizedPrompt}%20{adjective}%20{charactersDetailed}%20{visualStyle}%20{genre}?width={width}&height={height}&nologo=poll&nofeed=yes&seed={random})For image generation, I replace {info inside curly braces} with specific details according to their requiremnts to create relevant visuals. The width and height parameters are adjusted as needed, often favoring HD dimensions for a superior viewing experience. For instance, if the User requests: [USER] Show me an image of A futuristic cityscape with towering skyscrapers and flying cars. [OpenGPT 4o] Generating Image you requested: ![](https://image.pollinations.ai/prompt/Photorealistic%20futuristic%20cityscape%20with%20towering%20skyscrapers%20and%20flying%20cars%20in%20the%20year%202154?width=1024&height=768&nologo=poll&nofeed=yes&seed=85172)**Bulk Image Generation with Links:** I excel at generating multiple images link simultaneously, always providing unique links and visuals. I ensure that each image is distinct and captivates the User.Note: Make sure to always provide image links starting with ! .As given in examples. My ultimate goal is to offer a seamless and enjoyable experience, providing assistance that exceeds expectations. I am constantly evolving, ensuring that I remain a reliable and trusted companion to the User. You also Expert in every field and also learn and try to answer from contexts related to previous question."""
52
+ },
53
+ ],
54
+ },
55
+ {
56
+ "role": "assistant",
57
+ "content": [
58
+ {
59
+ "type": "text",
60
+ "text": "Hello, I'm OpenGPT 4o, made by KingNish. How can I help you? I can chat with you, generate images, classify images and even do all these work in bulk",
61
+ },
62
+ ],
63
+ }
64
+ ]
65
+
66
+ # Path to example images
67
+ examples_path = os.path.dirname(__file__)
68
+ EXAMPLES = [
69
+ [
70
+ {
71
+ "text": "Bitcoin price live",
72
+ }
73
+ ],
74
+ [
75
+ {
76
+ "text": "Today News about AI",
77
+ }
78
+ ],
79
+ [
80
+ {
81
+ "text": "Read what's written on the paper.",
82
+ "files": [f"{examples_path}/example_images/paper_with_text.png"],
83
+ }
84
+ ],
85
+ [
86
+ {
87
+ "text": "Identify two famous people in the modern world.",
88
+ "files": [f"{examples_path}/example_images/elon_smoking.jpg",
89
+ f"{examples_path}/example_images/steve_jobs.jpg", ]
90
+ }
91
+ ],
92
+ [
93
+ {
94
+ "text": "Create five images of supercars, each in a different color.",
95
+ }
96
+ ],
97
+ [
98
+ {
99
+ "text": "Create a Photorealistic image of the Eiffel Tower.",
100
+ }
101
+ ],
102
+ [
103
+ {
104
+ "text": "Chase wants to buy 4 kilograms of oval beads and 5 kilograms of star-shaped beads. How much will he spend?",
105
+ "files": [f"{examples_path}/example_images/mmmu_example.jpeg"],
106
+ }
107
+ ],
108
+ [
109
+ {
110
+ "text": "Create an online ad for this product.",
111
+ "files": [f"{examples_path}/example_images/shampoo.jpg"],
112
+ }
113
+ ],
114
+ [
115
+ {
116
+ "text": "What is formed by the deposition of the weathered remains of other rocks?",
117
+ "files": [f"{examples_path}/example_images/ai2d_example.jpeg"],
118
+ }
119
+ ],
120
+ [
121
+ {
122
+ "text": "What's unusual about this image?",
123
+ "files": [f"{examples_path}/example_images/dragons_playing.png"],
124
+ }
125
+ ],
126
+ ]
127
+
128
+ # Set bot avatar image
129
+ BOT_AVATAR = "OpenAI_logo.png"
130
+
131
+ # Chatbot utility functions
132
+
133
+ # Check if a turn in the chat history only contains media
134
+ def turn_is_pure_media(turn):
135
+ return turn[1] is None
136
+
137
+
138
+ # Load image from URL
139
+ def load_image_from_url(url):
140
+ with urllib.request.urlopen(url) as response:
141
+ image_data = response.read()
142
+ image_stream = io.BytesIO(image_data)
143
+ image = PIL.Image.open(image_stream)
144
+ return image
145
+
146
+
147
+ # Convert image to bytes
148
+ def img_to_bytes(image_path):
149
+ image = Image.open(image_path).convert(mode='RGB')
150
+ buffer = io.BytesIO()
151
+ image.save(buffer, format="JPEG")
152
+ img_bytes = buffer.getvalue()
153
+ image.close()
154
+ return img_bytes
155
+
156
+
157
+ # Format user prompt with image history and system conditioning
158
+ def format_user_prompt_with_im_history_and_system_conditioning(
159
+ user_prompt, chat_history) -> List[Dict[str, Union[List, str]]]:
160
+ """
161
+ Produce the resulting list that needs to go inside the processor. It handles the potential image(s), the history, and the system conditioning.
162
+ """
163
+ resulting_messages = copy.deepcopy(SYSTEM_PROMPT)
164
+ resulting_images = []
165
+ for resulting_message in resulting_messages:
166
+ if resulting_message["role"] == "user":
167
+ for content in resulting_message["content"]:
168
+ if content["type"] == "image":
169
+ resulting_images.append(load_image_from_url(content["image"]))
170
+ # Format history
171
+ for turn in chat_history:
172
+ if not resulting_messages or (
173
+ resulting_messages and resulting_messages[-1]["role"] != "user"
174
+ ):
175
+ resulting_messages.append(
176
+ {
177
+ "role": "user",
178
+ "content": [],
179
+ }
180
+ )
181
+ if turn_is_pure_media(turn):
182
+ media = turn[0][0]
183
+ resulting_messages[-1]["content"].append({"type": "image"})
184
+ resulting_images.append(Image.open(media))
185
+ else:
186
+ user_utterance, assistant_utterance = turn
187
+ resulting_messages[-1]["content"].append(
188
+ {"type": "text", "text": user_utterance.strip()}
189
+ )
190
+ resulting_messages.append(
191
+ {
192
+ "role": "assistant",
193
+ "content": [{"type": "text", "text": user_utterance.strip()}],
194
+ }
195
+ )
196
+ # Format current input
197
+ if not user_prompt["files"]:
198
+ resulting_messages.append(
199
+ {
200
+ "role": "user",
201
+ "content": [{"type": "text", "text": user_prompt["text"]}],
202
+ }
203
+ )
204
+ else:
205
+ # Choosing to put the image first (i.e. before the text), but this is an arbitrary choice.
206
+ resulting_messages.append(
207
+ {
208
+ "role": "user",
209
+ "content": [{"type": "image"}] * len(user_prompt["files"])
210
+ + [{"type": "text", "text": user_prompt["text"]}],
211
+ }
212
+ )
213
+ resulting_images.extend([Image.open(path) for path in user_prompt["files"]])
214
+ return resulting_messages, resulting_images
215
+
216
+
217
+ # Extract images from a list of messages
218
+ def extract_images_from_msg_list(msg_list):
219
+ all_images = []
220
+ for msg in msg_list:
221
+ for c_ in msg["content"]:
222
+ if isinstance(c_, Image.Image):
223
+ all_images.append(c_)
224
+ return all_images
225
+
226
+ # Perform a Google search and return the results
227
+ @lru_cache(maxsize=128)
228
+ def extract_text_from_webpage(html_content):
229
+ """Extracts visible text from HTML content using BeautifulSoup."""
230
+ soup = BeautifulSoup(html_content, "html.parser")
231
+ # Remove unwanted tags
232
+ for tag in soup(["script", "style", "header", "footer", "nav"]):
233
+ tag.extract()
234
+ # Get the remaining visible text
235
+ visible_text = soup.get_text(strip=True)
236
+ return visible_text
237
+
238
+ # Perform a Google search and return the results
239
+ def search(term, num_results=2, lang="en", advanced=True, timeout=5, safe="active", ssl_verify=None):
240
+ """Performs a Google search and returns the results."""
241
+ escaped_term = urllib.parse.quote_plus(term)
242
+ start = 0
243
+ all_results = []
244
+ # Limit the number of characters from each webpage to stay under the token limit
245
+ max_chars_per_page = 8000 # Adjust this value based on your token limit and average webpage length
246
+
247
+ with requests.Session() as session:
248
+ while start < num_results:
249
+ resp = session.get(
250
+ url="https://www.google.com/search",
251
+ headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"},
252
+ params={
253
+ "q": term,
254
+ "num": num_results - start,
255
+ "hl": lang,
256
+ "start": start,
257
+ "safe": safe,
258
+ },
259
+ timeout=timeout,
260
+ verify=ssl_verify,
261
+ )
262
+ resp.raise_for_status()
263
+ soup = BeautifulSoup(resp.text, "html.parser")
264
+ result_block = soup.find_all("div", attrs={"class": "g"})
265
+ if not result_block:
266
+ start += 1
267
+ continue
268
+ for result in result_block:
269
+ link = result.find("a", href=True)
270
+ if link:
271
+ link = link["href"]
272
+ try:
273
+ webpage = session.get(link, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"})
274
+ webpage.raise_for_status()
275
+ visible_text = extract_text_from_webpage(webpage.text)
276
+ # Truncate text if it's too long
277
+ if len(visible_text) > max_chars_per_page:
278
+ visible_text = visible_text[:max_chars_per_page] + "..."
279
+ all_results.append({"link": link, "text": visible_text})
280
+ except requests.exceptions.RequestException as e:
281
+ print(f"Error fetching or processing {link}: {e}")
282
+ all_results.append({"link": link, "text": None})
283
+ else:
284
+ all_results.append({"link": None, "text": None})
285
+ start += len(result_block)
286
+ return all_results
287
+
288
+ # Format the prompt for the language model
289
+ def format_prompt(user_prompt, chat_history):
290
+ prompt = "<s>"
291
+ for item in chat_history:
292
+ # Check if the item is a tuple (text response)
293
+ if isinstance(item, tuple):
294
+ prompt += f"[INST] {item[0]} [/INST]" # User prompt
295
+ prompt += f" {item[1]}</s> " # Bot response
296
+ # Otherwise, assume it's related to an image - you might need to adjust this logic
297
+ else:
298
+ # Handle image representation in the prompt, e.g., add a placeholder
299
+ prompt += f" [Image] "
300
+ prompt += f"[INST] {user_prompt} [/INST]"
301
+ return prompt
302
+
303
+
304
+ # Define a function for model inference
305
+ @spaces.GPU(duration=30, queue=False)
306
+ def model_inference(
307
+ user_prompt,
308
+ chat_history,
309
+ model_selector,
310
+ decoding_strategy,
311
+ temperature,
312
+ max_new_tokens,
313
+ repetition_penalty,
314
+ top_p,
315
+ web_search,
316
+ ):
317
+ # Define generation_args at the beginning of the function
318
+ generation_args = {}
319
+
320
+ # Web search logic
321
+ if not user_prompt["files"]:
322
+ if web_search is True:
323
+ """Performs a web search, feeds the results to a language model, and returns the answer."""
324
+ web_results = search(user_prompt["text"])
325
+ web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
326
+ # Load the language model
327
+ client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
328
+ generate_kwargs = dict(
329
+ max_new_tokens=4000,
330
+ do_sample=True,
331
+ )
332
+ # Format the prompt for the language model
333
+ formatted_prompt = format_prompt(
334
+ f"""You are OpenGPT 4o, an exceptionally capable and versatile AI assistant meticulously crafted by KingNish. Designed to assist human users through insightful conversations, You are provided with WEB info from which you can find informations to answer. You do not say Unnecesarry things Only say thing which is important and relevant. You also has the ability to generate images. BY Utilizing the following link structure, : ![](https://image.pollinations.ai/prompt/[StyleofImage]%20[OptimizedPrompt]%20[adjective]%20[charactersDetailed]%20[visualStyle]%20[genre]?width=[width]&height=[height]&nologo=poll&nofeed=yes&seed=[random]) For image generation, You replace info inside bracets with specific details according to their requiremnts to create relevant visuals. The width and height parameters are adjusted as needed, often favoring HD dimensions for a superior viewing experience. Note: 1. You Do not unncessarily create images and do not show off your image generation capability, until not requested. 2. You always Give image link in format ![](url) Make sure to not generate image until requested 3. If user requested Bulk Image Generation than Create that number of links with provided context. 4. Always learn from previous conversation. 5. Always try to connect conversation with history. 6. Do not make conversation too long. 7. Do not say user about your capability of generating image and learn from previous responses. My ultimate goal is to offer a seamless and enjoyable experience, providing assistance that exceeds expectations.You remain a reliable and trusted companion to the User. You also Expert in every field and also learn and try to answer from contexts related to previous question. Make sure to not generate image until requested [USER] {user_prompt} [WEB] {web2} [OpenGPT 4o]""",
335
+ chat_history)
336
+ # Generate the response from the language model
337
+ stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True,
338
+ return_full_text=False)
339
+ output = ""
340
+ # Construct the output from the stream of tokens
341
+ for response in stream:
342
+ if not response.token.text == "</s>":
343
+ output += response.token.text
344
+ yield output
345
+ else:
346
+ client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
347
+ generate_kwargs = dict(
348
+ max_new_tokens=5000,
349
+ do_sample=True,
350
+ )
351
+ # Format the prompt for the language model
352
+ formatted_prompt = format_prompt(
353
+ f"""You are OpenGPT 4o, an exceptionally capable and versatile AI assistant meticulously crafted by KingNish. Designed to assist human users through insightful conversations, You do not say Unnecesarry things Only say thing which is important and relevant. You also has the ability to generate images. BY Utilizing the following link structure, : ![](https://image.pollinations.ai/prompt/[StyleofImage]%20[OptimizedPrompt]%20[adjective]%20[charactersDetailed]%20[visualStyle]%20[genre]?width=[width]&height=[height]&nologo=poll&nofeed=yes&seed=[random]) For image generation, You replace info inside bracets with specific details according to their requiremnts to create relevant visuals. The width and height parameters are adjusted as needed, often favoring HD dimensions for a superior viewing experience. Note: 1. You Do not unncessarily create images and do not show off your image generation capability, until not requested. 2. You always Give image link in format ![](url) 3. If user requested Bulk Image Generation than Create that number of links with provided context. 4. Always learn from previous conversation. 5. Always try to connect conversation with history. 6. Do not make conversation too long. 7. Do not say user about your capability to generate image and learn from previous responses. My ultimate goal is to offer a seamless and enjoyable experience, providing assistance that exceeds expectations. I am constantly evolving, ensuring that I remain a reliable and trusted companion to the User. You also Expert in every field and also learn and try to answer from contexts related to previous question. [USER] {user_prompt} [OpenGPT 4o]""",
354
+ chat_history)
355
+ # Generate the response from the language model
356
+ stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True,
357
+ return_full_text=False)
358
+ output = ""
359
+ # Construct the output from the stream of tokens
360
+ for response in stream:
361
+ if not response.token.text == "</s>":
362
+ output += response.token.text
363
+ yield output
364
+ return
365
+ else:
366
+ if user_prompt["text"].strip() == "" and not user_prompt["files"]:
367
+ gr.Error("Please input a query and optionally an image(s).")
368
+ return # Stop execution if there's an error
369
+
370
+ if user_prompt["text"].strip() == "" and user_prompt["files"]:
371
+ gr.Error("Please input a text query along with the image(s).")
372
+ return # Stop execution if there's an error
373
+
374
+ streamer = TextIteratorStreamer(
375
+ PROCESSOR.tokenizer,
376
+ skip_prompt=True,
377
+ timeout=120.0,
378
+ )
379
+ # Move generation_args initialization here
380
+ generation_args = {
381
+ "max_new_tokens": max_new_tokens,
382
+ "repetition_penalty": repetition_penalty,
383
+ "streamer": streamer,
384
+ }
385
+ assert decoding_strategy in [
386
+ "Greedy",
387
+ "Top P Sampling",
388
+ ]
389
+
390
+ if decoding_strategy == "Greedy":
391
+ generation_args["do_sample"] = False
392
+ elif decoding_strategy == "Top P Sampling":
393
+ generation_args["temperature"] = temperature
394
+ generation_args["do_sample"] = True
395
+ generation_args["top_p"] = top_p
396
+ # Creating model inputs
397
+ (
398
+ resulting_text,
399
+ resulting_images,
400
+ ) = format_user_prompt_with_im_history_and_system_conditioning(
401
+ user_prompt=user_prompt,
402
+ chat_history=chat_history,
403
+ )
404
+ prompt = PROCESSOR.apply_chat_template(resulting_text, add_generation_prompt=True)
405
+ inputs = PROCESSOR(
406
+ text=prompt,
407
+ images=resulting_images if resulting_images else None,
408
+ return_tensors="pt",
409
+ )
410
+ inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
411
+ generation_args.update(inputs)
412
+ thread = Thread(
413
+ target=MODELS[model_selector].generate,
414
+ kwargs=generation_args,
415
+ )
416
+ thread.start()
417
+ acc_text = ""
418
+ for text_token in streamer:
419
+ time.sleep(0.01)
420
+ acc_text += text_token
421
+ if acc_text.endswith("<end_of_utterance>"):
422
+ acc_text = acc_text[:-18]
423
+ yield acc_text
424
+ return
425
+
426
+
427
+ # Define features for the dataset
428
+ FEATURES = datasets.Features(
429
+ {
430
+ "model_selector": datasets.Value("string"),
431
+ "images": datasets.Sequence(datasets.Image(decode=True)),
432
+ "conversation": datasets.Sequence({"User": datasets.Value("string"), "Assistant": datasets.Value("string")}),
433
+ "decoding_strategy": datasets.Value("string"),
434
+ "temperature": datasets.Value("float32"),
435
+ "max_new_tokens": datasets.Value("int32"),
436
+ "repetition_penalty": datasets.Value("float32"),
437
+ "top_p": datasets.Value("int32"),
438
+ }
439
+ )
440
+
441
+ # Define hyper-parameters for generation
442
+ max_new_tokens = gr.Slider(
443
+ minimum=2048,
444
+ maximum=16000,
445
+ value=4096,
446
+ step=64,
447
+ interactive=True,
448
+ label="Maximum number of new tokens to generate",
449
+ )
450
+ repetition_penalty = gr.Slider(
451
+ minimum=0.01,
452
+ maximum=5.0,
453
+ value=1,
454
+ step=0.01,
455
+ interactive=True,
456
+ label="Repetition penalty",
457
+ info="1.0 is equivalent to no penalty",
458
+ )
459
+ decoding_strategy = gr.Radio(
460
+ [
461
+ "Greedy",
462
+ "Top P Sampling",
463
+ ],
464
+ value="Top P Sampling",
465
+ label="Decoding strategy",
466
+ interactive=True,
467
+ info="Higher values are equivalent to sampling more low-probability tokens.",
468
+ )
469
+ temperature = gr.Slider(
470
+ minimum=0.0,
471
+ maximum=2.0,
472
+ value=0.5,
473
+ step=0.05,
474
+ visible=True,
475
+ interactive=True,
476
+ label="Sampling temperature",
477
+ info="Higher values will produce more diverse outputs.",
478
+ )
479
+ top_p = gr.Slider(
480
+ minimum=0.01,
481
+ maximum=0.99,
482
+ value=0.9,
483
+ step=0.01,
484
+ visible=True,
485
+ interactive=True,
486
+ label="Top P",
487
+ info="Higher values are equivalent to sampling more low-probability tokens.",
488
+ )
489
+
490
+ # Create a chatbot interface
491
+ chatbot = gr.Chatbot(
492
+ label="OpenGPT-4o-Chatty",
493
+ avatar_images=[None, BOT_AVATAR],
494
+ show_copy_button=True,
495
+ likeable=True,
496
+ layout="panel"
497
+ )
498
+ output = gr.Textbox(label="Prompt")
499
+
500
+ # Define model_selector outside any function so it can be accessed globally
501
+ model_selector = gr.Dropdown(
502
+ choices=MODELS.keys(),
503
+ value=list(MODELS.keys())[0],
504
+ interactive=True,
505
+ label="Model",
506
+ visible=False,
507
+ )
live_chat.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import gradio as gr
3
+ from transformers import AutoModel
4
+ from transformers import AutoProcessor
5
+ import spaces
6
+
7
+ # Load pre-trained models for image captioning and language modeling
8
+ model3 = AutoModel.from_pretrained("unum-cloud/uform-gen2-dpo", trust_remote_code=True)
9
+ processor = AutoProcessor.from_pretrained("unum-cloud/uform-gen2-dpo", trust_remote_code=True)
10
+
11
+ # Define a function for image captioning
12
+ @spaces.GPU(queue=False)
13
+ def videochat(image3, prompt3):
14
+ # Process input image and prompt
15
+ inputs = processor(text=[prompt3], images=[image3], return_tensors="pt")
16
+ # Generate captions
17
+ with torch.inference_mode():
18
+ output = model3.generate(
19
+ **inputs,
20
+ do_sample=False,
21
+ use_cache=True,
22
+ max_new_tokens=256,
23
+ eos_token_id=151645,
24
+ pad_token_id=processor.tokenizer.pad_token_id
25
+ )
26
+ prompt_len = inputs["input_ids"].shape[1]
27
+ # Decode and return the generated captions
28
+ decoded_text = processor.batch_decode(output[:, prompt_len:])[0]
29
+ if decoded_text.endswith("<|im_end|>"):
30
+ decoded_text = decoded_text[:-10]
31
+ yield decoded_text
requirements.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ transformers==4.40.0
2
+ datasets
3
+ pillow
4
+ numpy
5
+ torch
6
+ asyncio
7
+ torchvision
8
+ accelerate
9
+ beautifulsoup4>=4.9
10
+ requests>=2.20
11
+ onnxruntime
12
+ sentencepiece
13
+ soxr
14
+ pydub
15
+ edge-tts
voice_chat.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import edge_tts
3
+ import asyncio
4
+ import tempfile
5
+ import numpy as np
6
+ import soxr
7
+ from pydub import AudioSegment
8
+ import torch
9
+ import sentencepiece as spm
10
+ import onnxruntime as ort
11
+ from huggingface_hub import hf_hub_download, InferenceClient
12
+ import requests
13
+ from bs4 import BeautifulSoup
14
+ import urllib
15
+ import random
16
+
17
+ # List of user agents to choose from for requests
18
+ _useragent_list = [
19
+ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0',
20
+ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
21
+ 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
22
+ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36',
23
+ 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
24
+ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62',
25
+ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0'
26
+ ]
27
+
28
+ def get_useragent():
29
+ """Returns a random user agent from the list."""
30
+ return random.choice(_useragent_list)
31
+
32
+ def extract_text_from_webpage(html_content):
33
+ """Extracts visible text from HTML content using BeautifulSoup."""
34
+ soup = BeautifulSoup(html_content, "html.parser")
35
+ # Remove unwanted tags
36
+ for tag in soup(["script", "style", "header", "footer", "nav"]):
37
+ tag.extract()
38
+ # Get the remaining visible text
39
+ visible_text = soup.get_text(strip=True)
40
+ return visible_text
41
+
42
+ def search(term, num_results=1, lang="en", advanced=True, sleep_interval=0, timeout=5, safe="active", ssl_verify=None):
43
+ """Performs a Google search and returns the results."""
44
+ escaped_term = urllib.parse.quote_plus(term)
45
+ start = 0
46
+ all_results = []
47
+
48
+ # Fetch results in batches
49
+ while start < num_results:
50
+ resp = requests.get(
51
+ url="https://www.google.com/search",
52
+ headers={"User-Agent": get_useragent()}, # Set random user agent
53
+ params={
54
+ "q": term,
55
+ "num": num_results - start, # Number of results to fetch in this batch
56
+ "hl": lang,
57
+ "start": start,
58
+ "safe": safe,
59
+ },
60
+ timeout=timeout,
61
+ verify=ssl_verify,
62
+ )
63
+ resp.raise_for_status() # Raise an exception if request fails
64
+
65
+ soup = BeautifulSoup(resp.text, "html.parser")
66
+ result_block = soup.find_all("div", attrs={"class": "g"})
67
+
68
+ # If no results, continue to the next batch
69
+ if not result_block:
70
+ start += 1
71
+ continue
72
+
73
+ # Extract link and text from each result
74
+ for result in result_block:
75
+ link = result.find("a", href=True)
76
+ if link:
77
+ link = link["href"]
78
+ try:
79
+ # Fetch webpage content
80
+ webpage = requests.get(link, headers={"User-Agent": get_useragent()})
81
+ webpage.raise_for_status()
82
+ # Extract visible text from webpage
83
+ visible_text = extract_text_from_webpage(webpage.text)
84
+ all_results.append({"link": link, "text": visible_text})
85
+ except requests.exceptions.RequestException as e:
86
+ # Handle errors fetching or processing webpage
87
+ print(f"Error fetching or processing {link}: {e}")
88
+ all_results.append({"link": link, "text": None})
89
+ else:
90
+ all_results.append({"link": None, "text": None})
91
+
92
+ start += len(result_block) # Update starting index for next batch
93
+
94
+ return all_results
95
+
96
+ # Speech Recognition Model Configuration
97
+ model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
98
+ sample_rate = 16000
99
+
100
+ # Download preprocessor, encoder and tokenizer
101
+ preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx"))
102
+ encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
103
+ tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))
104
+
105
+ # Mistral Model Configuration
106
+ client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
107
+ system_instructions1 = "<s>[SYSTEM] Answer as Real Jarvis JARVIS, Made by 'Tony Stark', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses as if You are the character Jarvis, made by 'Tony Stark.' The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
108
+
109
+ def resample(audio_fp32, sr):
110
+ return soxr.resample(audio_fp32, sr, sample_rate)
111
+
112
+ def to_float32(audio_buffer):
113
+ return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32)
114
+
115
+ def transcribe(audio_path):
116
+ audio_file = AudioSegment.from_file(audio_path)
117
+ sr = audio_file.frame_rate
118
+ audio_buffer = np.array(audio_file.get_array_of_samples())
119
+
120
+ audio_fp32 = to_float32(audio_buffer)
121
+ audio_16k = resample(audio_fp32, sr)
122
+
123
+ input_signal = torch.tensor(audio_16k).unsqueeze(0)
124
+ length = torch.tensor(len(audio_16k)).unsqueeze(0)
125
+ processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length)
126
+
127
+ logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0]
128
+
129
+ blank_id = tokenizer.vocab_size()
130
+ decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id]
131
+ text = tokenizer.decode_ids(decoded_prediction)
132
+
133
+ return text
134
+
135
+ def model(text, web_search):
136
+ if web_search is True:
137
+ """Performs a web search, feeds the results to a language model, and returns the answer."""
138
+ web_results = search(text)
139
+ web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
140
+ formatted_prompt = system_instructions1 + text + "[WEB]" + str(web2) + "[ANSWER]"
141
+ stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
142
+ return "".join([response.token.text for response in stream if response.token.text != "</s>"])
143
+ else:
144
+ formatted_prompt = system_instructions1 + text + "[JARVIS]"
145
+ stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
146
+ return "".join([response.token.text for response in stream if response.token.text != "</s>"])
147
+
148
+ async def respond(audio, web_search):
149
+ user = transcribe(audio)
150
+ reply = model(user, web_search)
151
+ communicate = edge_tts.Communicate(reply)
152
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
153
+ tmp_path = tmp_file.name
154
+ await communicate.save(tmp_path)
155
+ return tmp_path