Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- .github/workflows/update_space.yml +28 -0
- README.md +3 -9
- app.py +6 -0
- chatbot_hf.py +65 -0
- test.ipynb +75 -0
- transformer_hf_0.py +51 -0
.github/workflows/update_space.yml
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Run Python script
|
2 |
+
|
3 |
+
on:
|
4 |
+
push:
|
5 |
+
branches:
|
6 |
+
- main
|
7 |
+
|
8 |
+
jobs:
|
9 |
+
build:
|
10 |
+
runs-on: ubuntu-latest
|
11 |
+
|
12 |
+
steps:
|
13 |
+
- name: Checkout
|
14 |
+
uses: actions/checkout@v2
|
15 |
+
|
16 |
+
- name: Set up Python
|
17 |
+
uses: actions/setup-python@v2
|
18 |
+
with:
|
19 |
+
python-version: '3.9'
|
20 |
+
|
21 |
+
- name: Install Gradio
|
22 |
+
run: python -m pip install gradio
|
23 |
+
|
24 |
+
- name: Log in to Hugging Face
|
25 |
+
run: python -c 'import huggingface_hub; huggingface_hub.login(token="${{ secrets.hf_token }}")'
|
26 |
+
|
27 |
+
- name: Deploy to Spaces
|
28 |
+
run: gradio deploy
|
README.md
CHANGED
@@ -1,12 +1,6 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji: ⚡
|
4 |
-
colorFrom: gray
|
5 |
-
colorTo: red
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 5.5.0
|
8 |
app_file: app.py
|
9 |
-
|
|
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: echo-chatbot
|
|
|
|
|
|
|
|
|
|
|
3 |
app_file: app.py
|
4 |
+
sdk: gradio
|
5 |
+
sdk_version: 5.0.2
|
6 |
---
|
|
|
|
app.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
def slow_echo(message, history):
|
4 |
+
return message
|
5 |
+
|
6 |
+
demo = gr.ChatInterface(slow_echo).queue().launch()
|
chatbot_hf.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import InferenceClient
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
client = InferenceClient(token="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")
|
5 |
+
|
6 |
+
def respond(
|
7 |
+
prompt: str,
|
8 |
+
history,
|
9 |
+
):
|
10 |
+
if not history:
|
11 |
+
history = [{"role": "system", "content": "You are a friendly chatbot"}]
|
12 |
+
history.append({"role": "user", "content": prompt})
|
13 |
+
|
14 |
+
yield history
|
15 |
+
|
16 |
+
response = {"role": "assistant", "content": ""}
|
17 |
+
for message in client.chat_completion(
|
18 |
+
history,
|
19 |
+
temperature=0.95,
|
20 |
+
top_p=0.9,
|
21 |
+
max_tokens=512,
|
22 |
+
stream=True,
|
23 |
+
model="HuggingFaceH4/zephyr-7b-beta"
|
24 |
+
):
|
25 |
+
response["content"] += message.choices[0].delta.content or ""
|
26 |
+
|
27 |
+
yield history + [response]
|
28 |
+
|
29 |
+
def handle_undo(history, undo_data: gr.UndoData):
|
30 |
+
return history[:undo_data.index], history[undo_data.index]['content']
|
31 |
+
|
32 |
+
def handle_retry(history, retry_data: gr.RetryData):
|
33 |
+
new_history = history[:retry_data.index]
|
34 |
+
previous_prompt = history[retry_data.index]['content']
|
35 |
+
yield from respond(previous_prompt, new_history)
|
36 |
+
|
37 |
+
def handle_like(data: gr.LikeData):
|
38 |
+
if data.liked:
|
39 |
+
print("You upvoted this response: ", data.value)
|
40 |
+
else:
|
41 |
+
print("You downvoted this response: ", data.value)
|
42 |
+
|
43 |
+
|
44 |
+
with gr.Blocks() as demo:
|
45 |
+
gr.Markdown("# Chat with Hugging Face Zephyr 7b 🤗")
|
46 |
+
chatbot = gr.Chatbot(
|
47 |
+
label="Agent",
|
48 |
+
type="messages",
|
49 |
+
avatar_images=(
|
50 |
+
None,
|
51 |
+
"https://em-content.zobj.net/source/twitter/376/hugging-face_1f917.png",
|
52 |
+
),
|
53 |
+
)
|
54 |
+
|
55 |
+
prompt = gr.Textbox(max_lines=1, label="Chat Message")
|
56 |
+
prompt.submit(respond, [prompt, chatbot], [chatbot])
|
57 |
+
prompt.submit(lambda: "", None, [prompt])
|
58 |
+
chatbot.undo(handle_undo, chatbot, [chatbot, prompt])
|
59 |
+
chatbot.retry(handle_retry, chatbot, [chatbot])
|
60 |
+
chatbot.like(handle_like, None, None)
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
if __name__ == "__main__":
|
65 |
+
demo.launch()
|
test.ipynb
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 13,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"name": "stdout",
|
10 |
+
"output_type": "stream",
|
11 |
+
"text": [
|
12 |
+
"I am going to yield something!\n",
|
13 |
+
"<generator object numberGenerator at 0x7e9ba9d18d60>\n",
|
14 |
+
"I am going to yield something!\n",
|
15 |
+
"<generator object numberGenerator at 0x7e9ba9d18d60>\n",
|
16 |
+
"I am going to yield something!\n",
|
17 |
+
"<generator object numberGenerator at 0x7e9ba9d18d60>\n",
|
18 |
+
"I am going to yield something!\n",
|
19 |
+
"<generator object numberGenerator at 0x7e9ba9d18d60>\n",
|
20 |
+
"I am going to yield something!\n",
|
21 |
+
"<generator object numberGenerator at 0x7e9ba9d18d60>\n",
|
22 |
+
"I am going to yield something!\n",
|
23 |
+
"<generator object numberGenerator at 0x7e9ba9d18d60>\n"
|
24 |
+
]
|
25 |
+
}
|
26 |
+
],
|
27 |
+
"source": [
|
28 |
+
"def numberGenerator(number_range: int):\n",
|
29 |
+
"\tfor i in range(number_range+1):\n",
|
30 |
+
"\t\tyield i\n",
|
31 |
+
"\n",
|
32 |
+
"\n",
|
33 |
+
"def loudNumberGenerator(number_range: int):\n",
|
34 |
+
"\tnormal_number_generator = numberGenerator(number_range=number_range)\n",
|
35 |
+
"\twhile True:\n",
|
36 |
+
"\t\tprint('I am going to yield something!')\n",
|
37 |
+
"\t\tyield normal_number_generator\n",
|
38 |
+
"\n",
|
39 |
+
"\n",
|
40 |
+
"zero_to_five = loudNumberGenerator(5)\n",
|
41 |
+
"\n",
|
42 |
+
"for _ in range(6):\n",
|
43 |
+
"\tprint(next(zero_to_five))"
|
44 |
+
]
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"cell_type": "code",
|
48 |
+
"execution_count": null,
|
49 |
+
"metadata": {},
|
50 |
+
"outputs": [],
|
51 |
+
"source": []
|
52 |
+
}
|
53 |
+
],
|
54 |
+
"metadata": {
|
55 |
+
"kernelspec": {
|
56 |
+
"display_name": "Python 3",
|
57 |
+
"language": "python",
|
58 |
+
"name": "python3"
|
59 |
+
},
|
60 |
+
"language_info": {
|
61 |
+
"codemirror_mode": {
|
62 |
+
"name": "ipython",
|
63 |
+
"version": 3
|
64 |
+
},
|
65 |
+
"file_extension": ".py",
|
66 |
+
"mimetype": "text/x-python",
|
67 |
+
"name": "python",
|
68 |
+
"nbconvert_exporter": "python",
|
69 |
+
"pygments_lexer": "ipython3",
|
70 |
+
"version": "3.10.12"
|
71 |
+
}
|
72 |
+
},
|
73 |
+
"nbformat": 4,
|
74 |
+
"nbformat_minor": 2
|
75 |
+
}
|
transformer_hf_0.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Need GPU!
|
3 |
+
"""
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import torch
|
7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
|
8 |
+
from threading import Thread
|
9 |
+
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-3B-v1")
|
11 |
+
model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-3B-v1", torch_dtype=torch.float16)
|
12 |
+
model = model.to('cuda:0')
|
13 |
+
|
14 |
+
class StopOnTokens(StoppingCriteria):
|
15 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
16 |
+
stop_ids = [29, 0]
|
17 |
+
for stop_id in stop_ids:
|
18 |
+
if input_ids[0][-1] == stop_id:
|
19 |
+
return True
|
20 |
+
return False
|
21 |
+
|
22 |
+
def predict(message, history):
|
23 |
+
history_transformer_format = list(zip(history[:-1], history[1:])) + [[message, ""]]
|
24 |
+
stop = StopOnTokens()
|
25 |
+
|
26 |
+
messages = "".join(["".join(["\n<human>:"+item[0], "\n<bot>:"+item[1]])
|
27 |
+
for item in history_transformer_format])
|
28 |
+
|
29 |
+
model_inputs = tokenizer([messages], return_tensors="pt").to("cuda")
|
30 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
31 |
+
generate_kwargs = dict(
|
32 |
+
model_inputs,
|
33 |
+
streamer=streamer,
|
34 |
+
max_new_tokens=1024,
|
35 |
+
do_sample=True,
|
36 |
+
top_p=0.95,
|
37 |
+
top_k=1000,
|
38 |
+
temperature=1.0,
|
39 |
+
num_beams=1,
|
40 |
+
stopping_criteria=StoppingCriteriaList([stop])
|
41 |
+
)
|
42 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
43 |
+
t.start()
|
44 |
+
|
45 |
+
partial_message = ""
|
46 |
+
for new_token in streamer:
|
47 |
+
if new_token != '<':
|
48 |
+
partial_message += new_token
|
49 |
+
yield partial_message
|
50 |
+
|
51 |
+
gr.ChatInterface(predict).launch()
|