velvet / standalone_velvet.py
dinhanhx's picture
Add model files
44c2fe5
import warnings
from dataclasses import dataclass
from typing import List
import torch
from einops import rearrange
from PIL import Image
from torch import nn
from transformers.models.bert import BertConfig, BertModel
from transformers.models.bloom import BloomConfig, BloomForCausalLM, BloomTokenizerFast
from transformers.models.convnext import ConvNextImageProcessor
from transformers.models.convnextv2 import ConvNextV2Config
from transformers.models.convnextv2.modeling_convnextv2 import ConvNextV2Model
# Copied from
# https://github.com/dinhanhx/velvet/blob/b70730654d26d399920964ed7e606a8f5586c9d1/velvet/collator.py#L13-L32
@dataclass
class ImageFeatureCollator:
image_processor: ConvNextImageProcessor
image_model: ConvNextV2Model
def __call__(self, batch_image: List[Image.Image]):
return self.tensorize_batch_image(batch_image=batch_image)
def tensorize_batch_image(self, batch_image: List[Image.Image]):
image_inputs = self.image_processor(batch_image, return_tensors="pt")
with torch.no_grad():
image_outputs = self.image_model(**image_inputs)
image_features = image_outputs["last_hidden_state"]
image_features = rearrange(image_features, "b c h w -> b h w c")
image_features = rearrange(image_features, "b h w c -> b (h w) c")
image_attentions = torch.ones(image_features.size()[:-1], dtype=torch.long)
return image_features, image_attentions
# Copied from
# https://github.com/dinhanhx/velvet/blob/b70730654d26d399920964ed7e606a8f5586c9d1/velvet/model/cutie.py#L6C1-L78C28
class IdentityForBertEmbeddings(nn.Module):
"""To skip all BertEmbeddings because another text embeddings provided by another model are used"""
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
def forward(self, **bert_embeddings_args):
inputs_embeds = bert_embeddings_args.get("inputs_embeds", None)
return inputs_embeds
class Cutie(nn.Module):
"""Cutie - Qt - Query Transformer - Q-Former
Cutie is motivated by the underlying theoretical foundations of Q-Former presented in BLIP-2 https://arxiv.org/abs/2301.12597
It should be noted that Cutie differs from the specific approach described in the aforementioned paper
Both Cutie and Q-former have Query tokens.
Cutie uses the same unmodified BERT.
Q-former modifies BERT to behave differently on some tasks.
"""
def __init__(
self,
bert_config: BertConfig,
max_query_length: int = 32,
language_model_ignore_label: int = -100,
) -> None:
assert bert_config.is_decoder, "BERT must be a decoder"
assert bert_config.add_cross_attention, "BERT must have cross attention layer"
super().__init__()
self.bert_model = BertModel(bert_config, add_pooling_layer=False)
self.bert_model.embeddings = IdentityForBertEmbeddings()
self.query_tokens = nn.Parameter(
torch.zeros(1, max_query_length, bert_config.hidden_size)
)
self.query_tokens.data.normal_(mean=0.0, std=bert_config.initializer_range)
self.query_attentions = torch.ones(
self.query_tokens.size()[:-1], dtype=torch.long
)
self.query_labels = torch.full(
self.query_tokens.size()[:-1], language_model_ignore_label, dtype=torch.long
)
def forward(
self,
image_features: torch.Tensor,
image_attentions: torch.Tensor,
instruction_embeds: torch.Tensor,
instruction_attention_mask: torch.Tensor,
):
batch_size = image_features.size(0)
query_tokens = self.query_tokens.expand(batch_size, -1, -1).to(
self.query_tokens.device
)
query_attentions = self.query_attentions.expand(batch_size, -1).to(
self.query_tokens.device
)
cat_embeds = torch.cat([query_tokens, instruction_embeds], dim=1)
cat_attentions = torch.cat(
[query_attentions, instruction_attention_mask], dim=1
)
bert_outputs = self.bert_model(
inputs_embeds=cat_embeds,
attention_mask=cat_attentions,
encoder_hidden_states=image_features,
encoder_attention_mask=image_attentions,
)
cutie_output = bert_outputs.last_hidden_state[:, : query_tokens.size(1), :]
return cutie_output
# Copied from
# https://github.com/dinhanhx/velvet/blob/b70730654d26d399920964ed7e606a8f5586c9d1/velvet/model/visual_bloom.py#L12C1-L162C31
class VisualBloom(nn.Module):
"""A BLOOM-based model that can take image inputs"""
def __init__(
self,
convnextv2_config: ConvNextV2Config,
bert_config: BertConfig,
bloom_config: BloomConfig,
bloom_name: str,
use_frozen_bloom: bool = True,
) -> None:
super().__init__()
if (
convnextv2_config.hidden_sizes[-1]
== bert_config.hidden_size
== bloom_config.hidden_size
):
self.use_projection = False
warnings.warn(
"All embedding dimensions are equal. No linear projection layers are created."
)
else:
self.use_projection = True
self.text_to_cutie = nn.Linear(
bloom_config.hidden_size, bert_config.hidden_size
)
self.image_to_cutie = nn.Linear(
convnextv2_config.hidden_sizes[-1], bert_config.hidden_size
)
self.cutie_to_text = nn.Linear(
bert_config.hidden_size, bloom_config.hidden_size
)
self.cutie_model = Cutie(bert_config)
# Load and freeze BLOOM model
if use_frozen_bloom:
self.bloom_model = BloomForCausalLM.from_pretrained(bloom_name)
for param in self.bloom_model.parameters():
param.requires_grad = False
else:
self.bloom_model = BloomForCausalLM(bloom_config)
def forward(
self,
# Image model outputs - Q-former inputs
image_features: torch.Tensor,
image_attentions: torch.Tensor,
# Q-former inputs
instruction_input_ids: torch.Tensor,
instruction_attention_mask: torch.Tensor,
# Frozen language model inputs
language_model_input_ids: torch.Tensor,
language_model_attention_mask: torch.Tensor,
language_model_labels: torch.Tensor,
):
instruction_embeds = self.bloom_model.transformer.word_embeddings(
instruction_input_ids
)
instruction_embeds = self.bloom_model.transformer.word_embeddings_layernorm(
instruction_embeds
)
if self.use_projection:
image_features = self.image_to_cutie(image_features)
instruction_embeds = self.text_to_cutie(instruction_embeds)
cutie_output = self.cutie_model(
image_features=image_features,
image_attentions=image_attentions,
instruction_embeds=instruction_embeds,
instruction_attention_mask=instruction_attention_mask,
)
if self.use_projection:
cutie_output = self.cutie_to_text(cutie_output)
cutie_attentions = self.cutie_model.query_attentions.expand(
cutie_output.size(0), -1
).to(cutie_output.device)
cutie_labels = self.cutie_model.query_labels.expand(
cutie_output.size(0), -1
).to(cutie_output.device)
language_model_embeds = self.bloom_model.transformer.word_embeddings(
language_model_input_ids
)
language_model_embeds = self.bloom_model.transformer.word_embeddings_layernorm(
language_model_embeds
)
cat_embeds = torch.cat([cutie_output, language_model_embeds], dim=1)
cat_attentions = torch.cat(
[cutie_attentions, language_model_attention_mask], dim=1
)
cat_labels = torch.cat([cutie_labels, language_model_labels], dim=1)
bloom_outputs = self.bloom_model(
inputs_embeds=cat_embeds, attention_mask=cat_attentions, labels=cat_labels
)
return bloom_outputs
@torch.no_grad()
def generate(
self,
# Image model outputs - Q-former inputs
image_features: torch.Tensor,
image_attentions: torch.Tensor,
# Q-former inputs
instruction_input_ids: torch.Tensor,
instruction_attention_mask: torch.Tensor,
):
instruction_embeds = self.bloom_model.transformer.word_embeddings(
instruction_input_ids
)
instruction_embeds = self.bloom_model.transformer.word_embeddings_layernorm(
instruction_embeds
)
if self.use_projection:
image_features = self.image_to_cutie(image_features)
cutie_instruction_embeds = self.text_to_cutie(instruction_embeds)
cutie_output = self.cutie_model(
image_features=image_features,
image_attentions=image_attentions,
instruction_embeds=cutie_instruction_embeds,
instruction_attention_mask=instruction_attention_mask,
)
if self.use_projection:
cutie_output = self.cutie_to_text(cutie_output)
cutie_attentions = self.cutie_model.query_attentions.expand(
cutie_output.size(0), -1
).to(cutie_output.device)
cat_embeds = torch.cat([cutie_output, instruction_embeds], dim=1)
cat_attentions = torch.cat(
[cutie_attentions, instruction_attention_mask], dim=1
)
language_output = self.bloom_model.generate(
inputs_embeds=cat_embeds,
attention_mask=cat_attentions,
max_length=96,
penalty_alpha=0.6,
top_k=4,
)
return language_output
def setup_models(visual_bloom_state_dict_path: str):
image_model_name = "facebook/convnextv2-large-22k-224"
image_config = ConvNextV2Config.from_pretrained(image_model_name)
image_processor = ConvNextImageProcessor.from_pretrained(image_model_name)
image_model = ConvNextV2Model.from_pretrained(image_model_name)
image_feature_collator = ImageFeatureCollator(image_processor, image_model)
bloom_model_name = "bigscience/bloomz-1b7"
bloom_config = BloomConfig.from_pretrained(bloom_model_name)
tokenizer = BloomTokenizerFast.from_pretrained(bloom_model_name)
tokenizer.padding_side = "right"
bert_config = BertConfig(
hidden_size=1024,
num_hidden_layers=6,
num_attention_heads=16,
is_decoder=True,
add_cross_attention=True,
)
visual_bloom = VisualBloom(
image_config,
bert_config,
bloom_config,
bloom_model_name,
use_frozen_bloom=False,
)
visual_bloom.load_state_dict(torch.load(visual_bloom_state_dict_path))
visual_bloom = visual_bloom.eval()
return {
"visual_bloom": visual_bloom,
"tokenizer": tokenizer,
"image_feature_collator": image_feature_collator,
}