Spaces:
Runtime error
Runtime error
import torch | |
import argparse | |
import gradio as gr | |
import diffusion | |
from torchvision import transforms | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--map_location", type=str, default="cpu") | |
parser.add_argument("--share", action='store_true') | |
args = parser.parse_args() | |
if __name__ == "__main__": | |
model_mnist = diffusion.DiffusionModel.load_from_checkpoint( | |
"./checkpoints/model/mnist.ckpt" | |
) | |
model_celeba = diffusion.DiffusionModel.load_from_checkpoint( | |
"./checkpoints/model/celebahq.ckpt" | |
) | |
to_pil = transforms.ToPILImage() | |
def denoise_celeb(timesteps): | |
for img in model_celeba.sampling(demo=True, mode="ddim", timesteps=timesteps, n_samples=1): | |
image = to_pil(img[0]) | |
yield image | |
def denoise(label, timesteps): | |
labels = torch.tensor([label]).to(model_mnist.device) | |
for img in model_mnist.sampling(labels=labels, demo=True, mode="ddim", timesteps=timesteps): | |
image = to_pil(img[0]) | |
yield image | |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="green")) as demo: | |
gr.Markdown("# Simple Diffusion Model") | |
gr.Markdown("## CelebA") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
timesteps_celeb = gr.Radio( | |
label='Timestep', choices=[10, 20, 50, 100, 200, 1000], | |
value=20 | |
) | |
sample_celeb_btn = gr.Button("Sample") | |
output = gr.Image( | |
value=to_pil((torch.randn(3, 64, 64)*255).type(torch.uint8)), | |
scale=1, | |
image_mode="RGB", | |
type='pil', | |
) | |
sample_celeb_btn.click(denoise_celeb, [timesteps_celeb], outputs=output) | |
gr.Markdown("## MNIST") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
with gr.Row(): | |
label = gr.Dropdown( | |
label='Label', | |
choices=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], | |
value=0 | |
) | |
timesteps = gr.Radio( | |
label='Timestep', choices=[10, 20, 50, 100, 200, 1000], | |
value=20 | |
) | |
with gr.Row(): | |
sample_mnist_btn = gr.Button("Sample") | |
output = gr.Image( | |
value=to_pil((torch.randn(1, 32, 32)*255).type(torch.uint8)), | |
scale=1, | |
image_mode="L", | |
type='pil', | |
) | |
sample_mnist_btn.click(denoise, [label, timesteps], outputs=output) | |
demo.launch(share=args.share) | |