Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,33 +6,50 @@ from torchvision import transforms
|
|
6 |
|
7 |
|
8 |
parser = argparse.ArgumentParser()
|
9 |
-
parser.add_argument("--ckpt_path", type=str, default="./checkpoints/model/mnist.ckpt")
|
10 |
parser.add_argument("--map_location", type=str, default="cpu")
|
11 |
parser.add_argument("--share", action='store_true')
|
12 |
args = parser.parse_args()
|
13 |
|
14 |
if __name__ == "__main__":
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
17 |
)
|
18 |
to_pil = transforms.ToPILImage()
|
19 |
|
20 |
-
def
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
# def noising(image):
|
25 |
-
# for i in range(100):
|
26 |
|
27 |
def denoise(label, timesteps):
|
28 |
-
labels = torch.tensor([label]).to(
|
29 |
-
for img in
|
30 |
image = to_pil(img[0])
|
31 |
yield image
|
32 |
|
33 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="green")) as demo:
|
34 |
gr.Markdown("# Simple Diffusion Model")
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
gr.Markdown("## MNIST")
|
37 |
with gr.Row():
|
38 |
with gr.Column(scale=2):
|
@@ -42,17 +59,17 @@ if __name__ == "__main__":
|
|
42 |
choices=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
|
43 |
value=0
|
44 |
)
|
45 |
-
timesteps = gr.Radio(
|
|
|
|
|
46 |
with gr.Row():
|
47 |
-
|
48 |
-
reset_btn = gr.Button("Reset")
|
49 |
output = gr.Image(
|
50 |
value=to_pil((torch.randn(1, 32, 32)*255).type(torch.uint8)),
|
51 |
-
scale=
|
52 |
image_mode="L",
|
53 |
type='pil',
|
54 |
)
|
55 |
-
|
56 |
-
reset_btn.click(reset, [output], outputs=output)
|
57 |
|
58 |
demo.launch(share=args.share)
|
|
|
6 |
|
7 |
|
8 |
parser = argparse.ArgumentParser()
|
|
|
9 |
parser.add_argument("--map_location", type=str, default="cpu")
|
10 |
parser.add_argument("--share", action='store_true')
|
11 |
args = parser.parse_args()
|
12 |
|
13 |
if __name__ == "__main__":
|
14 |
+
model_mnist = diffusion.DiffusionModel.load_from_checkpoint(
|
15 |
+
"./checkpoints/model/mnist.ckpt"
|
16 |
+
)
|
17 |
+
model_celeba = diffusion.DiffusionModel.load_from_checkpoint(
|
18 |
+
"./checkpoints/model/celebahq.ckpt"
|
19 |
)
|
20 |
to_pil = transforms.ToPILImage()
|
21 |
|
22 |
+
def denoise_celeb(timesteps):
|
23 |
+
for img in model_celeba.sampling(demo=True, mode="ddim", timesteps=timesteps, n_samples=1):
|
24 |
+
image = to_pil(img[0])
|
25 |
+
yield image
|
|
|
|
|
26 |
|
27 |
def denoise(label, timesteps):
|
28 |
+
labels = torch.tensor([label]).to(model_mnist.device)
|
29 |
+
for img in model_mnist.sampling(labels=labels, demo=True, mode="ddim", timesteps=timesteps):
|
30 |
image = to_pil(img[0])
|
31 |
yield image
|
32 |
|
33 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="green")) as demo:
|
34 |
gr.Markdown("# Simple Diffusion Model")
|
35 |
|
36 |
+
gr.Markdown("## CelebA")
|
37 |
+
with gr.Row():
|
38 |
+
with gr.Column(scale=2):
|
39 |
+
timesteps_celeb = gr.Radio(
|
40 |
+
label='Timestep', choices=[10, 20, 50, 100, 200, 1000]
|
41 |
+
)
|
42 |
+
sample_celeb_btn = gr.Button("Sample")
|
43 |
+
|
44 |
+
output = gr.Image(
|
45 |
+
value=to_pil((torch.randn(3, 64, 64)*255).type(torch.uint8)),
|
46 |
+
scale=1,
|
47 |
+
image_mode="RGB",
|
48 |
+
type='pil',
|
49 |
+
)
|
50 |
+
|
51 |
+
sample_celeb_btn.click(denoise_celeb, [timesteps_celeb], outputs=output)
|
52 |
+
|
53 |
gr.Markdown("## MNIST")
|
54 |
with gr.Row():
|
55 |
with gr.Column(scale=2):
|
|
|
59 |
choices=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
|
60 |
value=0
|
61 |
)
|
62 |
+
timesteps = gr.Radio(
|
63 |
+
label='Timestep', choices=[10, 20, 50, 100, 200, 1000]
|
64 |
+
)
|
65 |
with gr.Row():
|
66 |
+
sample_mnist_btn = gr.Button("Sample")
|
|
|
67 |
output = gr.Image(
|
68 |
value=to_pil((torch.randn(1, 32, 32)*255).type(torch.uint8)),
|
69 |
+
scale=1,
|
70 |
image_mode="L",
|
71 |
type='pil',
|
72 |
)
|
73 |
+
sample_mnist_btn.click(denoise, [label, timesteps], outputs=output)
|
|
|
74 |
|
75 |
demo.launch(share=args.share)
|