Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import torch
|
|
|
2 |
import argparse
|
3 |
import gradio as gr
|
4 |
import diffusion
|
@@ -6,7 +7,7 @@ from torchvision import transforms
|
|
6 |
|
7 |
|
8 |
parser = argparse.ArgumentParser()
|
9 |
-
parser.add_argument("--ckpt_path", type=str, default="./checkpoints/mnist.ckpt")
|
10 |
parser.add_argument("--map_location", type=str, default="cpu")
|
11 |
parser.add_argument("--share", action='store_true')
|
12 |
args = parser.parse_args()
|
@@ -21,9 +22,12 @@ if __name__ == "__main__":
|
|
21 |
image = to_pil((torch.randn(1, 32, 32)*255).type(torch.uint8))
|
22 |
return image
|
23 |
|
24 |
-
def
|
|
|
|
|
|
|
25 |
labels = torch.tensor([label]).to(model.device)
|
26 |
-
for img in model.
|
27 |
image = to_pil(img[0])
|
28 |
yield image
|
29 |
|
@@ -33,11 +37,13 @@ if __name__ == "__main__":
|
|
33 |
gr.Markdown("## MNIST")
|
34 |
with gr.Row():
|
35 |
with gr.Column(scale=2):
|
36 |
-
|
37 |
-
label=
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
41 |
with gr.Row():
|
42 |
sample_btn = gr.Button("Sampling")
|
43 |
reset_btn = gr.Button("Reset")
|
@@ -47,7 +53,7 @@ if __name__ == "__main__":
|
|
47 |
image_mode="L",
|
48 |
type='pil',
|
49 |
)
|
50 |
-
sample_btn.click(denoise, [label], outputs=output)
|
51 |
reset_btn.click(reset, [output], outputs=output)
|
52 |
|
53 |
demo.launch(share=args.share)
|
|
|
1 |
import torch
|
2 |
+
import numpy as np
|
3 |
import argparse
|
4 |
import gradio as gr
|
5 |
import diffusion
|
|
|
7 |
|
8 |
|
9 |
parser = argparse.ArgumentParser()
|
10 |
+
parser.add_argument("--ckpt_path", type=str, default="./checkpoints/model/mnist.ckpt")
|
11 |
parser.add_argument("--map_location", type=str, default="cpu")
|
12 |
parser.add_argument("--share", action='store_true')
|
13 |
args = parser.parse_args()
|
|
|
22 |
image = to_pil((torch.randn(1, 32, 32)*255).type(torch.uint8))
|
23 |
return image
|
24 |
|
25 |
+
# def noising(image):
|
26 |
+
# for i in range(100):
|
27 |
+
|
28 |
+
def denoise(label, timesteps):
|
29 |
labels = torch.tensor([label]).to(model.device)
|
30 |
+
for img in model.sampling(labels=labels, demo=True, mode="ddim", timesteps=timesteps):
|
31 |
image = to_pil(img[0])
|
32 |
yield image
|
33 |
|
|
|
37 |
gr.Markdown("## MNIST")
|
38 |
with gr.Row():
|
39 |
with gr.Column(scale=2):
|
40 |
+
with gr.Row():
|
41 |
+
label = gr.Dropdown(
|
42 |
+
label='Label',
|
43 |
+
choices=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
|
44 |
+
value=0
|
45 |
+
)
|
46 |
+
timesteps = gr.Radio(label='Timestep', choices=[10, 20, 50, 100, 200, 1000])
|
47 |
with gr.Row():
|
48 |
sample_btn = gr.Button("Sampling")
|
49 |
reset_btn = gr.Button("Reset")
|
|
|
53 |
image_mode="L",
|
54 |
type='pil',
|
55 |
)
|
56 |
+
sample_btn.click(denoise, [label, timesteps], outputs=output)
|
57 |
reset_btn.click(reset, [output], outputs=output)
|
58 |
|
59 |
demo.launch(share=args.share)
|