assisTen / app.py
dioarafl's picture
Update app.py
f2fc28a verified
import gradio as gr
import subprocess
import cv2
import torch
import torchaudio
from torchvision.models.detection import fasterrcnn_resnet50_fpn
import torchvision.transforms as transforms
from PIL import Image
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
class FasterRCNNDetector:
def __init__(self):
self.model = fasterrcnn_resnet50_fpn(pretrained=True)
self.model.eval()
self.classes = [
"__background__", "person", "bicycle", "car", "motorcycle", "airplane", "bus",
"train", "truck", "boat", "traffic light", "fire hydrant", "N/A", "stop sign",
"parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
"elephant", "bear", "zebra", "giraffe", "N/A", "backpack", "umbrella", "N/A", "N/A",
"handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball",
"kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket",
"bottle", "N/A", "wine glass", "cup", "fork", "knife", "spoon", "bowl",
"banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza",
"donut", "cake", "chair", "couch", "potted plant", "bed", "N/A", "dining table",
"N/A", "N/A", "toilet", "N/A", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
"microwave", "oven", "toaster", "sink", "refrigerator", "N/A", "book",
"clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"
]
def detect_objects(self, image):
image_pil = Image.fromarray(image)
transform = transforms.Compose([transforms.ToTensor()])
image_tensor = transform(image_pil).unsqueeze(0)
with torch.no_grad():
prediction = self.model(image_tensor)
boxes = prediction[0]['boxes']
labels = prediction[0]['labels']
scores = prediction[0]['scores']
for box, label, score in zip(boxes, labels, scores):
box = [int(i) for i in box]
cv2.rectangle(image, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
cv2.putText(image, self.classes[label], (box[0], box[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36,255,12), 2)
return image
class JarvisModels:
def __init__(self):
self.processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
self.model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
async def generate_response(self, prompt):
# Logika untuk menghasilkan tanggapan
response = gr.Interface.load("models/openai-community/gpt2").process(prompt)
return response
async def transcribe_audio(self, audio_file):
input_audio, _ = torchaudio.load(audio_file)
input_values = self.processor(input_audio, return_tensors="pt").input_values
logits = self.model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = self.processor.batch_decode(predicted_ids)
return transcription[0]
def transcribe(audio):
global messages
audio_file = open(audio, "rb")
# Transkripsi audio secara lokal (Anda dapat menambahkan logika transkripsi sesuai kebutuhan)
transcript = "Lorem ipsum dolor sit amet, consectetur adipiscing elit."
# Logika tanggapan (Anda dapat menambahkan logika untuk menghasilkan tanggapan sesuai kebutuhan)
system_message = {"role": "system", "content": "Lorem ipsum dolor sit amet, consectetur adipiscing elit."}
subprocess.call(["say", system_message['content']])
chat_transcript = "User: " + transcript + "\n\n" + "System: " + system_message['content'] + "\n\n"
return chat_transcript
detector = FasterRCNNDetector()
iface = gr.Interface(
fn=[detector.detect_objects, JarvisModels().transcribe_audio, JarvisModels().generate_response, transcribe],
inputs=[
gr.inputs.Video(label="Webcam", parameters={"fps": 30}),
gr.inputs.Audio(source="microphone", type="filepath")
],
outputs=[
gr.outputs.Image(),
"text",
"text",
"text"
],
title="Vision and Speech Interface",
description="This interface detects objects in the webcam feed and transcribes speech recorded through the microphone."
)
iface.launch()