dioarafl commited on
Commit
6c8e0a0
·
verified ·
1 Parent(s): 6f8b3cd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -86
app.py CHANGED
@@ -1,85 +1,13 @@
1
  import cv2
2
  import gradio as gr
3
- import edge_tts
4
  import tempfile
5
- import numpy as np
6
  from torchvision.models.detection import fasterrcnn_resnet50_fpn
7
  import torchvision.transforms as transforms
8
  from PIL import Image
9
- from huggingface_hub import InferenceClient
10
-
11
- class YoloDetector:
12
- def __init__(self, weights_path, cfg_path, names_path):
13
- self.net = cv2.dnn.readNet(weights_path, cfg_path)
14
- self.classes = []
15
- with open(names_path, "r") as f:
16
- self.classes = [line.strip() for line in f.readlines()]
17
- self.layer_names = self.net.getLayerNames()
18
- self.output_layers = [self.layer_names[i[0] - 1] for i in self.net.getUnconnectedOutLayers()]
19
-
20
- def detect_objects(self, frame):
21
- height, width, channels = frame.shape
22
- blob = cv2.dnn.blobFromImage(frame, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
23
- self.net.setInput(blob)
24
- outs = self.net.forward(self.output_layers)
25
-
26
- class_ids = []
27
- confidences = []
28
- boxes = []
29
- for out in outs:
30
- for detection in out:
31
- scores = detection[5:]
32
- class_id = np.argmax(scores)
33
- confidence = scores[class_id]
34
- if confidence > 0.5:
35
- center_x = int(detection[0] * width)
36
- center_y = int(detection[1] * height)
37
- w = int(detection[2] * width)
38
- h = int(detection[3] * height)
39
- x = int(center_x - w / 2)
40
- y = int(center_y - h / 2)
41
- boxes.append([x, y, w, h])
42
- confidences.append(float(confidence))
43
- class_ids.append(class_id)
44
-
45
- indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
46
- font = cv2.FONT_HERSHEY_PLAIN
47
- for i in range(len(boxes)):
48
- if i in indexes:
49
- x, y, w, h = boxes[i]
50
- label = str(self.classes[class_ids[i]])
51
- color = (0, 255, 0)
52
- cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
53
- cv2.putText(frame, label, (x, y + 30), font, 3, color, 2)
54
-
55
- return frame
56
-
57
- class JarvisModels:
58
- def __init__(self):
59
- self.client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
60
- self.detector = YoloDetector("yolov3.weights", "yolov3.cfg", "coco.names")
61
-
62
- async def generate_model1(self, prompt):
63
- generate_kwargs = dict(
64
- temperature=0.6,
65
- max_new_tokens=256,
66
- top_p=0.95,
67
- repetition_penalty=1,
68
- do_sample=True,
69
- seed=42,
70
- )
71
- formatted_prompt = system_instructions1 + prompt + "[JARVIS]"
72
- stream = self.client1.text_generation(
73
- formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
74
- output = ""
75
- for response in stream:
76
- output += response.token.text
77
-
78
- communicate = edge_tts.Communicate(output)
79
- with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
80
- tmp_path = tmp_file.name
81
- communicate.save(tmp_path)
82
- return tmp_path
83
 
84
  class FasterRCNNDetector:
85
  def __init__(self):
@@ -119,16 +47,51 @@ class FasterRCNNDetector:
119
 
120
  return image
121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122
  def generate_response(frame):
123
  jarvis = JarvisModels()
124
- detector = FasterRCNNDetector()
125
- frame_with_boxes = jarvis.detector.detect_objects(frame)
126
- cv2.imwrite("temp.jpg", frame_with_boxes)
127
- communicate = edge_tts.Communicate("Objects detected!")
128
- with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
129
- tmp_path = tmp_file.name
130
- communicate.save(tmp_path)
131
- return tmp_path
132
 
133
- iface = gr.Webcam(gr.Video(label="Webcam", parameters=["fps=30"], is_streaming=True), preprocess=generate_response, postprocess=FasterRCNNDetector().detect_objects, show_loading=False)
134
- gr.Interface(fn=iface, layout="vertical", capture_session=True).launch()
 
 
 
 
 
 
 
1
  import cv2
2
  import gradio as gr
 
3
  import tempfile
4
+ import torch
5
  from torchvision.models.detection import fasterrcnn_resnet50_fpn
6
  import torchvision.transforms as transforms
7
  from PIL import Image
8
+ import deepspeech
9
+ import numpy as np
10
+ import soundfile as sf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
  class FasterRCNNDetector:
13
  def __init__(self):
 
47
 
48
  return image
49
 
50
+ class JarvisModels:
51
+ def __init__(self):
52
+ self.client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
53
+ self.model = deepspeech.Model("deepspeech-0.9.3-models.pbmm")
54
+ self.model.setBeamWidth(500)
55
+
56
+ async def generate_response(self, prompt):
57
+ generate_kwargs = dict(
58
+ temperature=0.6,
59
+ max_new_tokens=256,
60
+ top_p=0.95,
61
+ repetition_penalty=1,
62
+ do_sample=True,
63
+ seed=42,
64
+ )
65
+ formatted_prompt = system_instructions1 + prompt + "[JARVIS]"
66
+ stream = self.client1.text_generation(
67
+ formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
68
+ output = ""
69
+ for response in stream:
70
+ output += response.token.text
71
+
72
+ communicate = edge_tts.Communicate(output)
73
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
74
+ tmp_path = tmp_file.name
75
+ communicate.save(tmp_path)
76
+ return tmp_path
77
+
78
+ def transcribe_audio(audio_file):
79
+ model = JarvisModels().model
80
+ audio, sample_rate = sf.read(audio_file)
81
+ return model.stt(audio)
82
+
83
  def generate_response(frame):
84
  jarvis = JarvisModels()
85
+ response_model = await jarvis.generate_response("Hello, I see some interesting objects!")
86
+ return response_model
87
+
88
+ detector = FasterRCNNDetector()
 
 
 
 
89
 
90
+ iface = gr.Interface(
91
+ fn=[detector.detect_objects, transcribe_audio],
92
+ inputs=gr.inputs.Video(label="Webcam", parameters={"fps": 30}),
93
+ outputs=[gr.outputs.Image(), "text"],
94
+ title="Vision and Speech Interface",
95
+ description="This interface detects objects in the webcam feed and transcribes speech recorded through the microphone."
96
+ )
97
+ iface.launch()