import os import re import gradio as gr import edge_tts import asyncio import time import tempfile from huggingface_hub import InferenceClient class JarvisModels: def __init__(self): self.client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") self.client2 = InferenceClient("meta-llama/Meta-Llama-3-70B-Instruct") self.client3 = InferenceClient("meta-llama/Meta-Llama-3-70B-Instruct") async def generate_model1(self, prompt): generate_kwargs = dict( temperature=0.6, max_new_tokens=256, top_p=0.95, repetition_penalty=1, do_sample=True, seed=42, ) formatted_prompt = system_instructions1 + prompt + "[JARVIS]" stream = self.client1.text_generation( formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True) output = "" for response in stream: output += response.token.text communicate = edge_tts.Communicate(output) with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: tmp_path = tmp_file.name await communicate.save(tmp_path) yield tmp_path async def generate_model2(self, prompt): generate_kwargs = dict( temperature=0.6, max_new_tokens=512, top_p=0.95, repetition_penalty=1, do_sample=True, ) formatted_prompt = system_instructions2 + prompt + "[ASSISTANT]" stream = self.client2.text_generation( formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True) output = "" for response in stream: output += response.token.text communicate = edge_tts.Communicate(output) with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: tmp_path = tmp_file.name await communicate.save(tmp_path) yield tmp_path async def generate_model3(self, prompt): generate_kwargs = dict( temperature=0.6, max_new_tokens=2048, top_p=0.95, repetition_penalty=1, do_sample=True, ) formatted_prompt = system_instructions3 + prompt + "[ASSISTANT]" stream = self.client3.text_generation( formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True) output = "" for response in stream: output += response.token.text communicate = edge_tts.Communicate(output) with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: tmp_path = tmp_file.name await communicate.save(tmp_path) yield tmp_path class JarvisApp: def __init__(self): self.models = JarvisModels() def launch_app(self): with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) with gr.Row(): user_input = gr.Textbox(label="Prompt", value="What is Wikipedia") input_text = gr.Textbox(label="Input Text", elem_id="important") output_audio = gr.Audio(label="JARVIS", type="filepath", interactive=False, autoplay=True, elem_classes="audio") with gr.Row(): translate_btn = gr.Button("Response") translate_btn.click(fn=self.models.generate_model1, inputs=user_input, outputs=output_audio, api_name="translate") gr.Markdown(MORE) if __name__ == "__main__": demo.queue(max_size=200).launch() if __name__ == "__main__": app = JarvisApp() app.launch_app()