import cv2 import gradio as gr import edge_tts import tempfile import numpy as np from torchvision.models.detection import fasterrcnn_resnet50_fpn import torchvision.transforms as transforms from PIL import Image from huggingface_hub import InferenceClient class YoloDetector: def __init__(self, weights_path, cfg_path, names_path): self.net = cv2.dnn.readNet(weights_path, cfg_path) self.classes = [] with open(names_path, "r") as f: self.classes = [line.strip() for line in f.readlines()] self.layer_names = self.net.getLayerNames() self.output_layers = [self.layer_names[i[0] - 1] for i in self.net.getUnconnectedOutLayers()] def detect_objects(self, frame): height, width, channels = frame.shape blob = cv2.dnn.blobFromImage(frame, 0.00392, (416, 416), (0, 0, 0), True, crop=False) self.net.setInput(blob) outs = self.net.forward(self.output_layers) class_ids = [] confidences = [] boxes = [] for out in outs: for detection in out: scores = detection[5:] class_id = np.argmax(scores) confidence = scores[class_id] if confidence > 0.5: center_x = int(detection[0] * width) center_y = int(detection[1] * height) w = int(detection[2] * width) h = int(detection[3] * height) x = int(center_x - w / 2) y = int(center_y - h / 2) boxes.append([x, y, w, h]) confidences.append(float(confidence)) class_ids.append(class_id) indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4) font = cv2.FONT_HERSHEY_PLAIN for i in range(len(boxes)): if i in indexes: x, y, w, h = boxes[i] label = str(self.classes[class_ids[i]]) color = (0, 255, 0) cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2) cv2.putText(frame, label, (x, y + 30), font, 3, color, 2) return frame class JarvisModels: def __init__(self): self.client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") self.detector = YoloDetector("yolov3.weights", "yolov3.cfg", "coco.names") async def generate_model1(self, prompt): generate_kwargs = dict( temperature=0.6, max_new_tokens=256, top_p=0.95, repetition_penalty=1, do_sample=True, seed=42, ) formatted_prompt = system_instructions1 + prompt + "[JARVIS]" stream = self.client1.text_generation( formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True) output = "" for response in stream: output += response.token.text communicate = edge_tts.Communicate(output) with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: tmp_path = tmp_file.name communicate.save(tmp_path) return tmp_path class FasterRCNNDetector: def __init__(self): self.model = fasterrcnn_resnet50_fpn(pretrained=True) self.model.eval() self.classes = [ "__background__", "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "N/A", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "N/A", "backpack", "umbrella", "N/A", "N/A", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "N/A", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "N/A", "dining table", "N/A", "N/A", "toilet", "N/A", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "N/A", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush" ] def detect_objects(self, image): image_pil = Image.fromarray(image) transform = transforms.Compose([transforms.ToTensor()]) image_tensor = transform(image_pil).unsqueeze(0) with torch.no_grad(): prediction = self.model(image_tensor) boxes = prediction[0]['boxes'] labels = prediction[0]['labels'] scores = prediction[0]['scores'] for box, label, score in zip(boxes, labels, scores): box = [int(i) for i in box] cv2.rectangle(image, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2) cv2.putText(image, self.classes[label], (box[0], box[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36,255,12), 2) return image def generate_response(frame): jarvis = JarvisModels() detector = FasterRCNNDetector() frame_with_boxes = jarvis.detector.detect_objects(frame) cv2.imwrite("temp.jpg", frame_with_boxes) communicate = edge_tts.Communicate("Objects detected!") with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: tmp_path = tmp_file.name communicate.save(tmp_path) return tmp_path iface = gr.Webcam(gr.Video(label="Webcam", parameters=["fps=30"], is_streaming=True), preprocess=generate_response, postprocess=FasterRCNNDetector().detect_objects, show_loading=False) gr.Interface(fn=iface, layout="vertical", capture_session=True).launch()