Spaces:
Runtime error
Runtime error
File size: 3,160 Bytes
199a0ec de9ee5d 199a0ec de9ee5d 199a0ec de9ee5d 199a0ec de9ee5d 199a0ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
from transformers import (
pipeline,
AutoModelForSpeechSeq2Seq,
AutoProcessor,
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
import torch
import os
import random
def yt2mp3(url, outputMp3F):
tmpVideoF=random.random()
os.system(f"./bin/youtube-dl -o /tmp/{tmpVideoF} --verbose " + url)
os.system(f"ffmpeg -y -i /tmp/{tmpVideoF}.* -vn -ar 44100 -ac 2 -b:a 192k {outputMp3F}")
def speech2text(mp3_file):
device = 'cuda:0'
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "distil-whisper/distil-large-v2"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id,
torch_dtype=torch_dtype,
low_cpu_mem_usage=True,
use_safetensors=True,
use_flash_attention_2=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=15,
batch_size=16,
torch_dtype=torch_dtype,
device=device,
)
result = pipe(mp3_file)
text_from_video = result["text"]
return text_from_video
def chat(system_prompt, text):
model_name = "meta-llama/Llama-2-7b-chat-hf"
token = os.environ['HUGGINGFACE_TOKEN']
bnb_config = BitsAndBytesConfig(
load_in_8bit=True
)
device_map = {"": 0}
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map=device_map,
use_auth_token=token
)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=token)
llama_pipeline = pipeline(task="text-generation", model=model, tokenizer=tokenizer)
text = f"""
<s>[INST] <<SYS>>
{system_prompt}
<</SYS>>
{text}[/INST]
"""
sequences = llama_pipeline(
text,
do_sample=True,
top_k=10,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
max_length=32000
)
generated_text = sequences[0]["generated_text"]
generated_text = generated_text[generated_text.find('[/INST]')+len('[/INST]'):]
return generated_text
def summarize(text):
input_len = 10000
while True:
summary = chat("", "Summarize the following: " + text[0:input_len])
if len(text) < input_len:
return summary
text = summary + " " + text[input_len:]
import gradio as gr
def summarize_from_youtube(url):
outputMp3F = "./files/audio.mp3"
yt2mp3(url=url, outputMp3F=outputMp3F)
transcribed = speech2text(mp3_file=outputMp3F)
summary = summarize(transcribed)
return summary
youtube_url = gr.inputs.Textbox(lines=1, label="Enter YouTube URL")
output_text = gr.outputs.Textbox(label="Summary")
gr.Interface(
fn=summarize_from_youtube,
inputs=youtube_url,
outputs=output_text,
title="YouTube Summarizer",
description="Enter a YouTube URL to summarize its content."
).launch()
|