File size: 40,893 Bytes
694d535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Install any required libraries"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install -U -q langchain langchain-openai langchain_core langchain-community langchainhub openai"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install -qU faiss_cpu pymupdf pandas"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install -qU ragas"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Set environment variables"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import openai\n",
    "from getpass import getpass\n",
    "\n",
    "openai.api_key = getpass(\"Please provide your OpenAI Key: \")\n",
    "os.environ[\"OPENAI_API_KEY\"] = openai.api_key"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Load Data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_community.document_loaders import PyMuPDFLoader\n",
    "\n",
    "loader = PyMuPDFLoader(\n",
    "    \"input_data/nvidia_10k.pdf\",\n",
    ")\n",
    "\n",
    "documents = loader.load()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'source': 'input_data/nvidia_10k.pdf',\n",
       " 'file_path': 'input_data/nvidia_10k.pdf',\n",
       " 'page': 0,\n",
       " 'total_pages': 96,\n",
       " 'format': 'PDF 1.4',\n",
       " 'title': '0001045810-24-000029',\n",
       " 'author': 'EDGAR® Online LLC, a subsidiary of OTC Markets Group',\n",
       " 'subject': 'Form 10-K filed on 2024-02-21 for the period ending 2024-01-28',\n",
       " 'keywords': '0001045810-24-000029; ; 10-K',\n",
       " 'creator': 'EDGAR Filing HTML Converter',\n",
       " 'producer': 'EDGRpdf Service w/ EO.Pdf 22.0.40.0',\n",
       " 'creationDate': \"D:20240221173732-05'00'\",\n",
       " 'modDate': \"D:20240221173744-05'00'\",\n",
       " 'trapped': '',\n",
       " 'encryption': 'Standard V2 R3 128-bit RC4'}"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "documents[0].metadata"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Transform - Split documents into chunks"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
    "\n",
    "text_splitter = RecursiveCharacterTextSplitter(\n",
    "    chunk_size = 700,\n",
    "    chunk_overlap = 50\n",
    ")\n",
    "\n",
    "documents = text_splitter.split_documents(documents)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "624"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(documents)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Load OpenAI Embeddings model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_openai import OpenAIEmbeddings\n",
    "\n",
    "embeddings = OpenAIEmbeddings(\n",
    "    model=\"text-embedding-3-small\"\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Create a FAISS Vector Store"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_community.vectorstores import FAISS\n",
    "\n",
    "vector_store = FAISS.from_documents(documents, embeddings)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Create a Retriever"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [],
   "source": [
    "retriever = vector_store.as_retriever()\n",
    "retrieved_documents = retriever.invoke(\"Who is the E-VP, Operations - and how old are they?\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "page_content=\"Debora Shoquist\\n69\\nExecutive Vice President, Operations\\nTimothy S. Teter\\n57\\nExecutive Vice President and General Counsel\\nJen-Hsun Huang co-founded NVIDIA in 1993 and has served as our President, Chief Executive Officer, and a member of the Board of Directors since our\\ninception. From 1985 to 1993, Mr. Huang was employed at LSI Logic Corporation, a computer chip manufacturer, where he held a variety of positions including\\nas Director of Coreware, the business unit responsible for LSI's SOC. From 1983 to 1985, Mr. Huang was a microprocessor designer for AMD, a semiconductor\\ncompany. Mr. Huang holds a B.S.E.E. degree from Oregon State University and an M.S.E.E. degree from Stanford University.\" metadata={'source': 'input_data/nvidia_10k.pdf', 'file_path': 'input_data/nvidia_10k.pdf', 'page': 11, 'total_pages': 96, 'format': 'PDF 1.4', 'title': '0001045810-24-000029', 'author': 'EDGAR® Online LLC, a subsidiary of OTC Markets Group', 'subject': 'Form 10-K filed on 2024-02-21 for the period ending 2024-01-28', 'keywords': '0001045810-24-000029; ; 10-K', 'creator': 'EDGAR Filing HTML Converter', 'producer': 'EDGRpdf Service w/ EO.Pdf 22.0.40.0', 'creationDate': \"D:20240221173732-05'00'\", 'modDate': \"D:20240221173744-05'00'\", 'trapped': '', 'encryption': 'Standard V2 R3 128-bit RC4'}\n",
      "page_content='supports diverse hiring, retention, and employee engagement, which we believe makes NVIDIA a great place to work.\\nDuring fiscal year 2025, we will continue to have a flexible work environment and maintain our company wide 2-days off a quarter for employees to rest and\\nrecharge.\\nInformation About Our Executive Officers\\nThe following sets forth certain information regarding our executive officers, their ages, and positions as of February\\xa016, 2024:\\nName\\nAge\\nPosition\\nJen-Hsun Huang\\n60\\nPresident and Chief Executive Officer\\nColette M. Kress\\n56\\nExecutive Vice President and Chief Financial Officer\\nAjay K. Puri\\n69\\nExecutive Vice President, Worldwide Field Operations\\nDebora Shoquist\\n69' metadata={'source': 'input_data/nvidia_10k.pdf', 'file_path': 'input_data/nvidia_10k.pdf', 'page': 11, 'total_pages': 96, 'format': 'PDF 1.4', 'title': '0001045810-24-000029', 'author': 'EDGAR® Online LLC, a subsidiary of OTC Markets Group', 'subject': 'Form 10-K filed on 2024-02-21 for the period ending 2024-01-28', 'keywords': '0001045810-24-000029; ; 10-K', 'creator': 'EDGAR Filing HTML Converter', 'producer': 'EDGRpdf Service w/ EO.Pdf 22.0.40.0', 'creationDate': \"D:20240221173732-05'00'\", 'modDate': \"D:20240221173744-05'00'\", 'trapped': '', 'encryption': 'Standard V2 R3 128-bit RC4'}\n",
      "page_content='Puri previously held marketing, management consulting, and product development positions at Hewlett-Packard, an information technology company, Booz Allen\\nHamilton Inc., a management and technology consulting company, and Texas Instruments Incorporated. Mr. Puri holds a B.S.E.E. degree from the University of\\nMinnesota, an M.S.E.E. degree from the California Institute of Technology and an M.B.A. degree from Harvard Business School.\\nDebora Shoquist joined NVIDIA in 2007 as Senior Vice President of Operations and in 2009 became Executive Vice President of Operations. Prior to NVIDIA,' metadata={'source': 'input_data/nvidia_10k.pdf', 'file_path': 'input_data/nvidia_10k.pdf', 'page': 12, 'total_pages': 96, 'format': 'PDF 1.4', 'title': '0001045810-24-000029', 'author': 'EDGAR® Online LLC, a subsidiary of OTC Markets Group', 'subject': 'Form 10-K filed on 2024-02-21 for the period ending 2024-01-28', 'keywords': '0001045810-24-000029; ; 10-K', 'creator': 'EDGAR Filing HTML Converter', 'producer': 'EDGRpdf Service w/ EO.Pdf 22.0.40.0', 'creationDate': \"D:20240221173732-05'00'\", 'modDate': \"D:20240221173744-05'00'\", 'trapped': '', 'encryption': 'Standard V2 R3 128-bit RC4'}\n",
      "page_content='Table of Contents\\nstrategy, planning, reporting and business development for the division. Prior to joining Microsoft, Ms. Kress spent eight years at Texas Instruments Incorporated,\\na semiconductor company, where she held a variety of finance positions. Ms. Kress holds a B.S. degree in Finance from University of Arizona and an M.B.A.\\ndegree from Southern Methodist University.\\nAjay K. Puri joined NVIDIA in 2005 as Senior Vice President, Worldwide Sales and became Executive Vice President, Worldwide Field Operations in 2009. Prior\\nto NVIDIA, he held positions in sales, marketing, and general management over a 22-year career at Sun Microsystems, Inc., a computing systems company. Mr.' metadata={'source': 'input_data/nvidia_10k.pdf', 'file_path': 'input_data/nvidia_10k.pdf', 'page': 12, 'total_pages': 96, 'format': 'PDF 1.4', 'title': '0001045810-24-000029', 'author': 'EDGAR® Online LLC, a subsidiary of OTC Markets Group', 'subject': 'Form 10-K filed on 2024-02-21 for the period ending 2024-01-28', 'keywords': '0001045810-24-000029; ; 10-K', 'creator': 'EDGAR Filing HTML Converter', 'producer': 'EDGRpdf Service w/ EO.Pdf 22.0.40.0', 'creationDate': \"D:20240221173732-05'00'\", 'modDate': \"D:20240221173744-05'00'\", 'trapped': '', 'encryption': 'Standard V2 R3 128-bit RC4'}\n"
     ]
    }
   ],
   "source": [
    "for doc in retrieved_documents:\n",
    "  print(doc)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Create a RAG Chain"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.prompts import ChatPromptTemplate\n",
    "\n",
    "template = \"\"\"Answer the question based only on the following context. If you cannot answer the question with the context, please respond with 'I don't know':\n",
    "\n",
    "Context:\n",
    "{context}\n",
    "\n",
    "Question:\n",
    "{question}\n",
    "\"\"\"\n",
    "\n",
    "prompt = ChatPromptTemplate.from_template(template)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [],
   "source": [
    "from operator import itemgetter\n",
    "\n",
    "from langchain_openai import ChatOpenAI\n",
    "from langchain_core.output_parsers import StrOutputParser\n",
    "from langchain_core.runnables import RunnablePassthrough\n",
    "\n",
    "primary_qa_llm = ChatOpenAI(model_name=\"gpt-3.5-turbo\", temperature=0)\n",
    "\n",
    "retrieval_augmented_qa_chain = (\n",
    "    # INVOKE CHAIN WITH: {\"question\" : \"<<SOME USER QUESTION>>\"}\n",
    "    # \"question\" : populated by getting the value of the \"question\" key\n",
    "    # \"context\"  : populated by getting the value of the \"question\" key and chaining it into the base_retriever\n",
    "    {\"context\": itemgetter(\"question\") | retriever, \"question\": itemgetter(\"question\")}\n",
    "    # \"context\"  : is assigned to a RunnablePassthrough object (will not be called or considered in the next step)\n",
    "    #              by getting the value of the \"context\" key from the previous step\n",
    "    | RunnablePassthrough.assign(context=itemgetter(\"context\"))\n",
    "    # \"response\" : the \"context\" and \"question\" values are used to format our prompt object and then piped\n",
    "    #              into the LLM and stored in a key called \"response\"\n",
    "    # \"context\"  : populated by getting the value of the \"context\" key from the previous step\n",
    "    | {\"response\": prompt | primary_qa_llm, \"context\": itemgetter(\"context\")}\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Mid-Term Challenge Tests"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Who is the E-VP, Operations - and how old are they?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Debora Shoquist, 69 years old.\n"
     ]
    }
   ],
   "source": [
    "question = \"Who is the E-VP, Operations - and how old are they?\"\n",
    "\n",
    "result = retrieval_augmented_qa_chain.invoke({\"question\" : question})\n",
    "\n",
    "print(result[\"response\"].content)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### What is the gross carrying amount of Total Amortizable Intangible Assets for Jan 29, 2023?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "$3,539 million\n"
     ]
    }
   ],
   "source": [
    "question = \"What is the gross carrying amount of Total Amortizable Intangible Assets for Jan 29, 2023?\"\n",
    "\n",
    "result = retrieval_augmented_qa_chain.invoke({\"question\" : question})\n",
    "\n",
    "print(result[\"response\"].content)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Evaluation using RAGAS"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {},
   "outputs": [],
   "source": [
    "eval_documents = documents\n",
    "\n",
    "text_splitter = RecursiveCharacterTextSplitter(\n",
    "    chunk_size = 1500,\n",
    "    chunk_overlap = 400\n",
    ")\n",
    "\n",
    "eval_documents = text_splitter.split_documents(eval_documents)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "624"
      ]
     },
     "execution_count": 26,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(documents)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/var/folders/_1/hpp7wgls4pb3zx13lgn3cp8w0000gn/T/ipykernel_93059/735169035.py:4: DeprecationWarning: The function with_openai was deprecated in 0.1.4, and will be removed in the 0.2.0 release. Use from_langchain instead.\n",
      "  generator = TestsetGenerator.with_openai()\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "d98b77660cf94470b304eb2909723ffb",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "embedding nodes:   0%|          | 0/1248 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Filename and doc_id are the same for all nodes.\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "dc4d9a604cd747e99866b9b32c1ba98c",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Generating:   0%|          | 0/10 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from ragas.testset.generator import TestsetGenerator\n",
    "from ragas.testset.evolutions import simple, reasoning, multi_context\n",
    "\n",
    "generator = TestsetGenerator.with_openai()\n",
    "\n",
    "testset = generator.generate_with_langchain_docs(documents, test_size=10, distributions={simple: 0.25, reasoning: 0.25, multi_context: 0.5})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "DataRow(question='What steps does the vendor risk assessment process involve to mitigate cybersecurity threats?', contexts=['mitigate and recover from identified and significant cybersecurity threats.\\nWe also have a vendor risk assessment process consisting of the distribution and review of supplier questionnaires designed to help us evaluate cybersecurity\\nrisks that we may encounter when working with third parties that have access to confidential and other sensitive company information. We take steps designed\\nto ensure that such vendors have implemented data privacy and security controls that help mitigate the cybersecurity risks associated with these vendors. We'], ground_truth='The vendor risk assessment process involves the distribution and review of supplier questionnaires designed to evaluate cybersecurity risks. The goal is to ensure that vendors have implemented data privacy and security controls to mitigate cybersecurity risks.', evolution_type='simple', metadata=[{'source': 'input_data/nvidia_10k.pdf', 'file_path': 'input_data/nvidia_10k.pdf', 'page': 30, 'total_pages': 96, 'format': 'PDF 1.4', 'title': '0001045810-24-000029', 'author': 'EDGAR® Online LLC, a subsidiary of OTC Markets Group', 'subject': 'Form 10-K filed on 2024-02-21 for the period ending 2024-01-28', 'keywords': '0001045810-24-000029; ; 10-K', 'creator': 'EDGAR Filing HTML Converter', 'producer': 'EDGRpdf Service w/ EO.Pdf 22.0.40.0', 'creationDate': \"D:20240221173732-05'00'\", 'modDate': \"D:20240221173744-05'00'\", 'trapped': '', 'encryption': 'Standard V2 R3 128-bit RC4'}])"
      ]
     },
     "execution_count": 28,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "testset.test_data[0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>question</th>\n",
       "      <th>contexts</th>\n",
       "      <th>ground_truth</th>\n",
       "      <th>evolution_type</th>\n",
       "      <th>metadata</th>\n",
       "      <th>episode_done</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>What steps does the vendor risk assessment pro...</td>\n",
       "      <td>[mitigate and recover from identified and sign...</td>\n",
       "      <td>The vendor risk assessment process involves th...</td>\n",
       "      <td>simple</td>\n",
       "      <td>[{'source': 'input_data/nvidia_10k.pdf', 'file...</td>\n",
       "      <td>True</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>How has NVIDIA been successful in attracting g...</td>\n",
       "      <td>[relating to human capital management.\\nTo be ...</td>\n",
       "      <td>NVIDIA has been successful in attracting globa...</td>\n",
       "      <td>simple</td>\n",
       "      <td>[{'source': 'input_data/nvidia_10k.pdf', 'file...</td>\n",
       "      <td>True</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>How is revenue designated based on billing loc...</td>\n",
       "      <td>[Table of Contents\\nAll Other operating loss -...</td>\n",
       "      <td>Revenue by geographic region is designated bas...</td>\n",
       "      <td>reasoning</td>\n",
       "      <td>[{'source': 'input_data/nvidia_10k.pdf', 'file...</td>\n",
       "      <td>True</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>How did the U.S. federal research tax credit a...</td>\n",
       "      <td>[The effective tax rate increased due to a dec...</td>\n",
       "      <td>The U.S. federal research tax credit, along wi...</td>\n",
       "      <td>reasoning</td>\n",
       "      <td>[{'source': 'input_data/nvidia_10k.pdf', 'file...</td>\n",
       "      <td>True</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>What is the purpose of a company's internal co...</td>\n",
       "      <td>[procedures as we considered necessary in the ...</td>\n",
       "      <td>A company's internal control over financial re...</td>\n",
       "      <td>multi_context</td>\n",
       "      <td>[{'source': 'input_data/nvidia_10k.pdf', 'file...</td>\n",
       "      <td>True</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                                            question  \\\n",
       "0  What steps does the vendor risk assessment pro...   \n",
       "1  How has NVIDIA been successful in attracting g...   \n",
       "2  How is revenue designated based on billing loc...   \n",
       "3  How did the U.S. federal research tax credit a...   \n",
       "4  What is the purpose of a company's internal co...   \n",
       "\n",
       "                                            contexts  \\\n",
       "0  [mitigate and recover from identified and sign...   \n",
       "1  [relating to human capital management.\\nTo be ...   \n",
       "2  [Table of Contents\\nAll Other operating loss -...   \n",
       "3  [The effective tax rate increased due to a dec...   \n",
       "4  [procedures as we considered necessary in the ...   \n",
       "\n",
       "                                        ground_truth evolution_type  \\\n",
       "0  The vendor risk assessment process involves th...         simple   \n",
       "1  NVIDIA has been successful in attracting globa...         simple   \n",
       "2  Revenue by geographic region is designated bas...      reasoning   \n",
       "3  The U.S. federal research tax credit, along wi...      reasoning   \n",
       "4  A company's internal control over financial re...  multi_context   \n",
       "\n",
       "                                            metadata  episode_done  \n",
       "0  [{'source': 'input_data/nvidia_10k.pdf', 'file...          True  \n",
       "1  [{'source': 'input_data/nvidia_10k.pdf', 'file...          True  \n",
       "2  [{'source': 'input_data/nvidia_10k.pdf', 'file...          True  \n",
       "3  [{'source': 'input_data/nvidia_10k.pdf', 'file...          True  \n",
       "4  [{'source': 'input_data/nvidia_10k.pdf', 'file...          True  "
      ]
     },
     "execution_count": 30,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "test_df = testset.to_pandas()\n",
    "test_df.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [],
   "source": [
    "test_questions = test_df[\"question\"].values.tolist()\n",
    "test_groundtruths = test_df[\"ground_truth\"].values.tolist()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {},
   "outputs": [],
   "source": [
    "answers = []\n",
    "contexts = []\n",
    "\n",
    "for question in test_questions:\n",
    "  response = retrieval_augmented_qa_chain.invoke({\"question\" : question})\n",
    "  answers.append(response[\"response\"].content)\n",
    "  contexts.append([context.page_content for context in response[\"context\"]])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "metadata": {},
   "outputs": [],
   "source": [
    "from datasets import Dataset\n",
    "\n",
    "response_dataset = Dataset.from_dict({\n",
    "    \"question\" : test_questions,\n",
    "    \"answer\" : answers,\n",
    "    \"contexts\" : contexts,\n",
    "    \"ground_truth\" : test_groundtruths\n",
    "})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'question': 'What steps does the vendor risk assessment process involve to mitigate cybersecurity threats?',\n",
       " 'answer': 'The vendor risk assessment process involves the distribution and review of supplier questionnaires designed to evaluate cybersecurity risks associated with third parties.',\n",
       " 'contexts': ['mitigate and recover from identified and significant cybersecurity threats.\\nWe also have a vendor risk assessment process consisting of the distribution and review of supplier questionnaires designed to help us evaluate cybersecurity\\nrisks that we may encounter when working with third parties that have access to confidential and other sensitive company information. We take steps designed\\nto ensure that such vendors have implemented data privacy and security controls that help mitigate the cybersecurity risks associated with these vendors. We',\n",
       "  'routinely assess our high-risk suppliers’ conformance to industry standards (e.g., ISO 27001, ISO 28001, and C-TPAT), and we evaluate them for additional\\ninformation, product, and physical security requirements.\\nRefer to “Item 1A. Risk factors” in this annual report on Form 10-K for additional information about cybersecurity-related risks.\\nGovernance\\nInformation security matters, including managing and assessing risks from cybersecurity threats, remain under the oversight of the Company’s Board of\\nDirectors, or the Board. The Audit Committee of the Board, or the Audit Committee, also reviews the adequacy and effectiveness of the Company’s information',\n",
       "  'threats. Our information security management program generally follows processes outlined in frameworks such as the ISO 27001 international standard for\\nInformation Security and we evaluate and evolve our security measures as appropriate. We consult with external parties, such as cybersecurity firms and risk\\nmanagement and governance experts, on risk management and strategy.\\nIdentifying, assessing, and managing cybersecurity risk is integrated into our overall risk management systems and processes, and we have in place\\ncybersecurity and data privacy training and policies designed to (a) respond to new requirements in global privacy laws and (b) prevent, detect, respond to,',\n",
       "  'material risks from cybersecurity threats. Our Chief Security Officer’s cybersecurity expertise includes over 17 years of combined government and private sector\\nassignments.\\n31'],\n",
       " 'ground_truth': 'The vendor risk assessment process involves the distribution and review of supplier questionnaires designed to evaluate cybersecurity risks. The goal is to ensure that vendors have implemented data privacy and security controls to mitigate cybersecurity risks.'}"
      ]
     },
     "execution_count": 34,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "response_dataset[0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "metadata": {},
   "outputs": [],
   "source": [
    "from ragas import evaluate\n",
    "from ragas.metrics import (\n",
    "    faithfulness,\n",
    "    answer_relevancy,\n",
    "    answer_correctness,\n",
    "    context_recall,\n",
    "    context_precision,\n",
    ")\n",
    "\n",
    "metrics = [\n",
    "    faithfulness,\n",
    "    answer_relevancy,\n",
    "    context_recall,\n",
    "    context_precision,\n",
    "    answer_correctness,\n",
    "]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "d9f291cd7c7a457a8873d8650383df87",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Evaluating:   0%|          | 0/50 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "results = evaluate(response_dataset, metrics)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### RAGAS Results"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'faithfulness': 0.9500, 'answer_relevancy': 0.9488, 'context_recall': 1.0000, 'context_precision': 0.7861, 'answer_correctness': 0.7919}"
      ]
     },
     "execution_count": 37,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "results"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 38,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>question</th>\n",
       "      <th>answer</th>\n",
       "      <th>contexts</th>\n",
       "      <th>ground_truth</th>\n",
       "      <th>faithfulness</th>\n",
       "      <th>answer_relevancy</th>\n",
       "      <th>context_recall</th>\n",
       "      <th>context_precision</th>\n",
       "      <th>answer_correctness</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>What steps does the vendor risk assessment pro...</td>\n",
       "      <td>The vendor risk assessment process involves th...</td>\n",
       "      <td>[mitigate and recover from identified and sign...</td>\n",
       "      <td>The vendor risk assessment process involves th...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.941041</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.833333</td>\n",
       "      <td>0.620211</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>How has NVIDIA been successful in attracting g...</td>\n",
       "      <td>NVIDIA has been successful in attracting globa...</td>\n",
       "      <td>[relating to human capital management.\\nTo be ...</td>\n",
       "      <td>NVIDIA has been successful in attracting globa...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.999999</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.833333</td>\n",
       "      <td>1.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>How is revenue designated based on billing loc...</td>\n",
       "      <td>Revenue is designated based on the billing loc...</td>\n",
       "      <td>[10 \\n(2)\\n— \\nTotal\\n$\\n(4,890)\\n$\\n(5,411)\\n...</td>\n",
       "      <td>Revenue by geographic region is designated bas...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.900000</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>0.743623</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>How did the U.S. federal research tax credit a...</td>\n",
       "      <td>The U.S. federal research tax credit, along wi...</td>\n",
       "      <td>[The effective tax rate increased due to a dec...</td>\n",
       "      <td>The U.S. federal research tax credit, along wi...</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.854537</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.916667</td>\n",
       "      <td>0.745303</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>What is the purpose of a company's internal co...</td>\n",
       "      <td>The purpose of a company's internal control ov...</td>\n",
       "      <td>[Management’s Annual Report on Internal Contro...</td>\n",
       "      <td>A company's internal control over financial re...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.950108</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>0.743341</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>How does NVIDIA align their principles with su...</td>\n",
       "      <td>NVIDIA aligns their principles with sustainabi...</td>\n",
       "      <td>[Sustainability and Governance\\nNVIDIA invents...</td>\n",
       "      <td>NVIDIA integrates sound environmental, social,...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.965690</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>0.838499</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>What technologies does NVIDIA RTX use to enhan...</td>\n",
       "      <td>NVIDIA RTX uses ray tracing technology and dee...</td>\n",
       "      <td>[television graphics.\\nThe NVIDIA RTX platform...</td>\n",
       "      <td>NVIDIA RTX uses ray tracing technology and dee...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.976349</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.638889</td>\n",
       "      <td>0.999318</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>What types of stock-based awards can be grante...</td>\n",
       "      <td>The types of stock-based awards that can be gr...</td>\n",
       "      <td>[The 2007 Plan authorizes the issuance of ince...</td>\n",
       "      <td>The types of stock-based awards that can be gr...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.955835</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.805556</td>\n",
       "      <td>0.617505</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8</th>\n",
       "      <td>What is the purpose of rebates for resellers a...</td>\n",
       "      <td>The purpose of rebates for resellers is to ser...</td>\n",
       "      <td>[For products sold with a right of return, we ...</td>\n",
       "      <td>The purpose of rebates for resellers is to ser...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.944586</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.611390</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9</th>\n",
       "      <td>How has NVIDIA been successful in attracting g...</td>\n",
       "      <td>NVIDIA has been successful in attracting globa...</td>\n",
       "      <td>[relating to human capital management.\\nTo be ...</td>\n",
       "      <td>NVIDIA has been successful in attracting globa...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.833333</td>\n",
       "      <td>1.000000</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                                            question  \\\n",
       "0  What steps does the vendor risk assessment pro...   \n",
       "1  How has NVIDIA been successful in attracting g...   \n",
       "2  How is revenue designated based on billing loc...   \n",
       "3  How did the U.S. federal research tax credit a...   \n",
       "4  What is the purpose of a company's internal co...   \n",
       "5  How does NVIDIA align their principles with su...   \n",
       "6  What technologies does NVIDIA RTX use to enhan...   \n",
       "7  What types of stock-based awards can be grante...   \n",
       "8  What is the purpose of rebates for resellers a...   \n",
       "9  How has NVIDIA been successful in attracting g...   \n",
       "\n",
       "                                              answer  \\\n",
       "0  The vendor risk assessment process involves th...   \n",
       "1  NVIDIA has been successful in attracting globa...   \n",
       "2  Revenue is designated based on the billing loc...   \n",
       "3  The U.S. federal research tax credit, along wi...   \n",
       "4  The purpose of a company's internal control ov...   \n",
       "5  NVIDIA aligns their principles with sustainabi...   \n",
       "6  NVIDIA RTX uses ray tracing technology and dee...   \n",
       "7  The types of stock-based awards that can be gr...   \n",
       "8  The purpose of rebates for resellers is to ser...   \n",
       "9  NVIDIA has been successful in attracting globa...   \n",
       "\n",
       "                                            contexts  \\\n",
       "0  [mitigate and recover from identified and sign...   \n",
       "1  [relating to human capital management.\\nTo be ...   \n",
       "2  [10 \\n(2)\\n— \\nTotal\\n$\\n(4,890)\\n$\\n(5,411)\\n...   \n",
       "3  [The effective tax rate increased due to a dec...   \n",
       "4  [Management’s Annual Report on Internal Contro...   \n",
       "5  [Sustainability and Governance\\nNVIDIA invents...   \n",
       "6  [television graphics.\\nThe NVIDIA RTX platform...   \n",
       "7  [The 2007 Plan authorizes the issuance of ince...   \n",
       "8  [For products sold with a right of return, we ...   \n",
       "9  [relating to human capital management.\\nTo be ...   \n",
       "\n",
       "                                        ground_truth  faithfulness  \\\n",
       "0  The vendor risk assessment process involves th...           1.0   \n",
       "1  NVIDIA has been successful in attracting globa...           1.0   \n",
       "2  Revenue by geographic region is designated bas...           1.0   \n",
       "3  The U.S. federal research tax credit, along wi...           0.5   \n",
       "4  A company's internal control over financial re...           1.0   \n",
       "5  NVIDIA integrates sound environmental, social,...           1.0   \n",
       "6  NVIDIA RTX uses ray tracing technology and dee...           1.0   \n",
       "7  The types of stock-based awards that can be gr...           1.0   \n",
       "8  The purpose of rebates for resellers is to ser...           1.0   \n",
       "9  NVIDIA has been successful in attracting globa...           1.0   \n",
       "\n",
       "   answer_relevancy  context_recall  context_precision  answer_correctness  \n",
       "0          0.941041             1.0           0.833333            0.620211  \n",
       "1          0.999999             1.0           0.833333            1.000000  \n",
       "2          0.900000             1.0           1.000000            0.743623  \n",
       "3          0.854537             1.0           0.916667            0.745303  \n",
       "4          0.950108             1.0           1.000000            0.743341  \n",
       "5          0.965690             1.0           1.000000            0.838499  \n",
       "6          0.976349             1.0           0.638889            0.999318  \n",
       "7          0.955835             1.0           0.805556            0.617505  \n",
       "8          0.944586             1.0           0.000000            0.611390  \n",
       "9          1.000000             1.0           0.833333            1.000000  "
      ]
     },
     "execution_count": 38,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "results_df = results.to_pandas()\n",
    "results_df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "py_3_11_lamma2_run",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}